
International Journal of Inventive Engineering and Sciences (IJIES)

ISSN: 2319–9598, Volume-5 Issue-1, November 2018

9

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication Retrieval Number: A0848115118

An Approach to the Development of a Game Bot

based on Reinforcement Learning

E. Saraswathi, Riyaz Ahmed, Vaibhav Kanna, Ashwin Kumar Thachat

Abstract: The current researches for developing a Game Bot

for digital games have been studied thoroughly. The bots created

based on those studies play the game exactly as an expert would.

The bots decide their next move by overlooking a number of

moves ahead of the next move. Our approach of creating a Game

Bot requires low computational resources without compromising

the difficulty and expertise of play. We have proposed to develop

our Game Bot through Reinforcement Learning. Reinforcement

Learning is an exciting new field of machine learning, in which

Bots learn by playing games. The bots are thrown in a gaming

environment, and then trained to learn by observing their actions

and rewards. We are going to build a Game Bot that will

autonomously play against and beat the Atari game Neon Race

Car.

Keywords: Game Bot, Reinforcement Learning, Machine

Learnin.

I. INTRODUCTION

 All the recent researches that create Game Bot have been

studied thoroughly. Google’s Deep Mind team developed a

game agent called “Alpha Go”.

Another game agent, “AKARA” was developed by

Information Processing Society of Japan. This game agent

plays Shogi, deciding the next move using the algorithm

based on council system.

The most recent breakthrough in AI bots was when a

team called OpenAI created a Game Bot that could play the

online multiplayer game DOTA (Defense Of The Ancients).

The OpenAI DOTA Game Bot beat the dream team of

DOTA (2018) consecutively on three straight games with

92% win rate. All the players agreed the Open AI’s DOTA

Game Bot to be the hardest opponent they’ve ever faced.

Our Game Bot is going to be similar to that of the

OpenAI’s Game Bot in a way that both of them use

Reinforcement Learning unlike many other Game Bots that

decide their moves using high Computational Algorithm.

Our Bot is not going to need much of Computational

Resources. The bot is going to learn the game by itself by

repeatedly playing the game inside the game environment

that has been fed to it.

Revised Version Manuscript Received on 30 October 2018.
Mrs. E. Saraswathi, Assistant Professor, Faculty of Engineering &

Technology, Department of Computerscience and Engineering, SRM

Institute of Science and Technology, Chennai (Tamil Nadu), India.

Riyaz Ahmed, Undergraduate Students, Department of Computer
Science and Engineering, SRM Institute of Science and Technology,

Chennai (Tamil Nadu), India.

Vaibhav Kanna, Undergraduate Students, Department of Computer
Science and Engineering, SRM Institute of Science and Technology,

Chennai (Tamil Nadu), India.
Ashwin Kumar Thachat, Undergraduate Students, Department of

Computer Science and Engineering, SRM Institute of Science and

Technology, Chennai (Tamil Nadu), India.

The only input that are going to be fed are the game

environment and the controls. In this research, we target the

development of a bot that plays and beats the game “Neon

Race Car”. Our method won’t be having tree search as we

want to reduce or completely neglect the search capability.

Reinforcement learning (RL) is the subfield of machine

learning concerned with decision making and motor control.

It studies how an agent can learn how to achieve goals in a

complex, uncertain environment. RL is very general,

encompassing all problems that involve making a sequence

of decisions: for example, controlling a robot’s motors so

that it’s able to run and jump, making business decisions like

pricing and inventory management, or playing video games

and board games. RL can even be applied to supervised

learning problems with sequential or structured outputs.RL

algorithms have started to achieve good results in many

difficult environments. RL has a long history, but until recent

advances in deep learning, it required lots of problem-

specific engineering. Deep Mind’s Atari results, BRETT

from Pieter Abbeel’s group, and Alpha Go all used deep RL

algorithms which did not make too many assumptions about

their environment, and thus can be applied in other settings.

However, RL researches is also slowed down by two

factors. The need for better benchmarks. In supervised

learning, progress has been driven by large labeled datasets

like Image Net. In RL, the closest equivalent would be a

large and diverse collection of environments. However, the

existing open-source collections of RL environments don’t

have enough variety, and they are often difficult to even set

up and use. Lack of standardization of environments used in

publications. Subtle differences in the problem definition,

such as the reward function or the set of actions, can

drastically alter a task’s difficulty. This issue makes it

difficult to reproduce published research and compare results

from different papers.

II. RULE OF GAME

A. Common Rules of The Game of Neon Run Are Quite

Different in Different Areas.

Because of graphical and physical limitations, the analysis is

performed according to the following rules. The game of

neon run is played by a single player facing the race court

environment trying to hold the 1st position or completing the

circuit in the least time possible. On the circuit, there is a

fixed path over which the car can accelerate and the sides of

that path, coming to contact which, will start to decelerate the

car. Initially, the car starts at the starting point. There will be

other bots that race along with the player. Crashing into other

cars will cause the player’s car to decelerate.

An Approach to the Development of a Game Bot based on Reinforcement Learning

10

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: A0848115118

The objective is to complete the race circuit finishing first

place. The following will be the controls: accelerate, brake,

turn left and turn right. The game stops when the player

crosses the finish line. The winner is the player who crosses

the finish line first.

B. Suggested Rules

 Before building a reinforcement learning agent, it is

necessary y to check if the game can be solve dbya simple

code with the fed instructions. The game is played using

reinforcement learning. The game agent is coded in python.

The coded script is integrated with the game and the bot it

allowed to learn the game. The progress is noted for every

attempt till the bot beats the game. It is always suggested that

the bot avoids contact with the sides of the road and crashing

into another car.

III. METHOD

A. Reinforcement Learning with Neural Network

The algorithm mde scribed in this section saves

computational time and to makes it more septic to Neon Race

Car. Consider an agent working in an environment. At time t,

the agent is in state, st. The agent can observe the

environment’s internal state and denote this with A(st).

Based on the observation made, the agent can then take an

action, at. The action is taken by the agent that changes the

environment’s internal state to st+1 and then the agent either

fails or gets a reward, rt. The environment used her is Atari’s

game – Neon Race Car.

First, we import the gym and openai universe. Gym is a

toolkit for developing and comparing reinforcement learning

algorithms. It makes no assumptions about the structure of

your agent, and is compatible with any numerical

computation library, such as Tensor Flow or Theano. The

gym library is a collection of test problems — environments

— that you can use to work out your reinforcement learning

algorithms. If you prefer, you can also clone the gym Git

repository directly. This is particularly useful when you’re

working on modifying Gym itself or adding environments.

These environments have a shared interface, allowing you to

write general algorithms. We will have to have pip and git

installed. There are two coded python files to solve the gym

environment. One contains the config for the neuroevolution

process and the other one is the program that creates the

neural networks and solves the game. In the first file, there

will be an option to insert or change the environment of the

game. It can be any game on the openai gym website. In this

case, we are going to be using the Atari Neon Race Car game

environment. The following will be the parameters:

maximum steps (the maximum number of steps to take per

single genome), episodes (the number of times to run a single

genome), render (to render the game while the algorithm is

learning), generations (the number of generations to evolve

the network), checkpoint (to create a save point to start or

resume the simulation) and num-cores (the number of cores

to be allotted by the system for parallel execution). If you

want to change the game, you will need to edit a few

parameters. As an example, let's say we want to play

Pacman. In order to play Atari games, we must use the ram

version. Currently only ram versions are compatible with our

program. Our program also provides the ability to continue a

simulation after it finishes. When the simulation finishes, it

will generate a checkpoint file. If we start a new simulation

on the same game, we’ll be able to use this checkpoint file to

pick up where the simulation left off.

If we ever want to do better than take random actions at each

step, it’d probably be good to actually know what our actions

are doing to the environment. The environment’s step

function returns exactly what we need. In fact, step returns

four values. These are: observation (object): an environment-

specific object representing your observation of the

environment. For example, pixel data from a camera, joint

angles and joint velocities of a robot, or the board state in a

board game; reward (float): amount of reward achieved by

the previous action. The scale varies between environments,

but the goal is always to increase your total reward; done

(boolean): whether it’s time to reset the environment again.

Most (but not all) tasks are divided up into well-defined

episodes, and done being True indicates the episode has

terminated; info (dict): diagnostic information useful for

debugging. It can sometimes be useful for learning.

However, official evaluations of your agent are not allowed

to use this for learning. This is just an implementation of the

classic “agent-environment loop”. Each time step, the agent

chooses an action, and the environment returns an

observation and a reward.

Fig. 1. The Exact Architecture of the Game BOT is as

Follows:

International Journal of Inventive Engineering and Sciences (IJIES)

ISSN: 2319–9598, Volume-5 Issue-1, November 2018

11

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication Retrieval Number: A0848115118

This shallow architecture was designed in such a way so as

to save the computational cost.

 The algorithm initially, generates a random action. The

generated action is tested in the environment and the results

are observed. A reward is computed for every action and its

reaction. If the reward is greater than the threshold, then the

record is inserted as a tuple to the game memory. Else,

another random action is generated by the algorithm and this

process keeps repeating itself until the algorithm completely

learns to beat the game and actually beats it.

IV. RESULTS

 Initially, the game bot played the game in a very insensible

manner. It was very hard to keep track of the actions that

were generated and performed. At times, the bot just

accelerated the car without steering left or right and bumped

into another car or the side of the road. It kept doing the same

action till it reached the finish line or ran out of time. The bot

had lost and then tried to include a steering into the game.

Then a brake and so on. After hours of learning the game, the

game bot was able to perfect the game in every manner and

was able to race the car first to the finish line with no hits or

bumps. The bot has become a professional Artificial

Intelligence gamer for that particular game.

REFERENCES

1. Muhammad Firmansyah Kasim Department of Physics University of

Oxford Ox ford OX1 3RH, United Kingdom “Playing the Game of

Congklak with Reinforcement Learning”, 8th International Conference

on Information Technology and Electrical Engineering (ICITEE),

Yogyakarta, Indonesia, 2016.
2. Paulo Bruno S. Serafim, Yuri Lenon B. Nogueira, Creto A. Vidal,

Joaquim B. Cavalcante Neto Department of Computing Federal

University of Cear´ a Fortaleza, Brazil
“OntheDevelopmentofanAutonomousAgentfora3DFirst-PersonShooter

Game Using Deep Reinforcement Learning “, Brazilian Symposium on

Computer Games and Digital Entertainment, 2017.
3. Etienne Perot Valeo, Maximilian Jaritz Valeo/ Inria, Marin To roman

off Valeo, Raoul de Charette Inria, “End-to-

EndDrivinginaRealisticRacingGamewithDeepReinforcementLearning”,
IEEE Conference on Computer Vision and Pattern Recognition

Workshops, 2017.

4. Keiji Kamei, Yuuki Kakizoe, “An Approach to the Development of a
Game Agent based on SOM and Reinforcement Learning”, 5th IIAI

International Congress on Advanced Applied Informatics, 2016.

5. Ian Good fellow and Yoshua Bengio and Aaron Courville “Deep
Learning,” An MIT Book Press, 2016.

6. Michael Nielsen “Neural Networks and Deep Learning”

