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Abstract: The current researches for developing a Game Bot 

for digital games have been studied thoroughly. The bots created 

based on those studies play the game exactly as an expert would. 

The bots decide their next move by overlooking a number of 

moves ahead of the next move. Our approach of creating a Game 

Bot requires low computational resources without compromising 

the difficulty and expertise of play. We have proposed to develop 

our Game Bot through Reinforcement Learning. Reinforcement 

Learning is an exciting new field of machine learning, in which 

Bots learn by playing games. The bots are thrown in a gaming 

environment, and then trained to learn by observing their actions 

and rewards. We are going to build a Game Bot that will 

autonomously play against and beat the Atari game Neon Race 

Car. 
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I. INTRODUCTION  

  All the recent researches that create Game Bot have been 

studied thoroughly. Google’s Deep Mind team developed a 

game agent called “Alpha Go”. 

Another game agent, “AKARA” was developed by 

Information Processing Society of Japan. This game agent 

plays Shogi, deciding the next move using the algorithm 

based on council system. 

The most recent breakthrough in AI bots was when a 

team called OpenAI created a Game Bot that could play the 

online multiplayer game DOTA (Defense Of The Ancients). 

The OpenAI DOTA Game Bot beat the dream team of 

DOTA (2018) consecutively on three straight games with 

92% win rate. All the players agreed the Open AI’s DOTA 

Game Bot to be the hardest opponent they’ve ever faced. 

Our Game Bot is going to be similar to that of the 

OpenAI’s Game Bot in a way that both of them use 

Reinforcement Learning unlike many other Game Bots that 

decide their moves using high Computational Algorithm. 

Our Bot is not going to need much of Computational 

Resources. The bot is going to learn the game by itself by 

repeatedly playing the game inside the game environment 

that has been fed to it. 
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The only input that are going to be fed are the game 

environment and the controls. In this research, we target the 

development of a bot that plays and beats the game “Neon 

Race Car”. Our method won’t be having tree search as we 

want to reduce or completely neglect the search capability. 

Reinforcement learning (RL) is the subfield of machine 

learning concerned with decision making and motor control. 

It studies how an agent can learn how to achieve goals in a 

complex, uncertain environment. RL is very general, 

encompassing all problems that involve making a sequence 

of decisions: for example, controlling a robot’s motors so 

that it’s able to run and jump, making business decisions like 

pricing and inventory management, or playing video games 

and board games. RL can even be applied to supervised 

learning problems with sequential or structured outputs.RL 

algorithms have started to achieve good results in many 

difficult environments. RL has a long history, but until recent 

advances in deep learning, it required lots of problem-

specific engineering. Deep Mind’s Atari results, BRETT 

from Pieter Abbeel’s group, and Alpha Go all used deep RL 

algorithms which did not make too many assumptions about 

their environment, and thus can be applied in other settings. 

However, RL researches is also slowed down by two 

factors. The need for better benchmarks. In supervised 

learning, progress has been driven by large labeled datasets 

like Image Net. In RL, the closest equivalent would be a 

large and diverse collection of environments. However, the 

existing open-source collections of RL environments don’t 

have enough variety, and they are often difficult to even set 

up and use. Lack of standardization of environments used in 

publications. Subtle differences in the problem definition, 

such as the reward function or the set of actions, can 

drastically alter a task’s difficulty. This issue makes it 

difficult to reproduce published research and compare results 

from different papers. 

II. RULE OF GAME 

A. Common Rules of The Game of Neon Run Are Quite 

Different in Different Areas.  

Because of graphical and physical limitations, the analysis is 

performed according to the following rules. The game of 

neon run is played by a single player facing the race court 

environment trying to hold the 1st position or completing the 

circuit in the least time possible. On the circuit, there is a 

fixed path over which the car can accelerate and the sides of 

that path, coming to contact which, will start to decelerate the 

car. Initially,  the car starts at the starting point. There will be 

other bots that race along with the player. Crashing into other 

cars will cause the player’s car to decelerate.  
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The objective is to complete the race circuit finishing first 

place. The following will be the controls: accelerate, brake, 

turn left and turn right. The game stops when the player 

crosses the finish line. The winner is the player who crosses 

the finish line first. 

B. Suggested Rules 

  Before building a reinforcement learning agent, it is 

necessary y to check if the game can be solve dbya simple 

code with the fed instructions. The game is played using 

reinforcement learning. The game agent is coded in python. 

The coded script is integrated with the game and the bot it 

allowed to learn the game. The progress is noted for every 

attempt till the bot beats the game. It is always suggested that 

the bot avoids contact with the sides of the road and crashing 

into another car. 

III. METHOD 

A. Reinforcement Learning with Neural Network 

The algorithm mde scribed in this section saves 

computational time and to makes it more septic to Neon Race 

Car. Consider an agent working in an environment. At time t, 

the agent is in state, st. The agent can observe the 

environment’s internal state and denote this with A(st). 

Based on the observation made, the agent can then take an 

action, at. The action is taken by the agent that changes the 

environment’s internal state to st+1 and then the agent either 

fails or gets a reward, rt. The environment used her is  Atari’s 

game – Neon Race Car. 

First, we import the gym and openai universe. Gym is a 

toolkit for developing and comparing reinforcement learning 

algorithms. It makes no assumptions about the structure of 

your agent, and is compatible with any numerical 

computation library, such as Tensor Flow or Theano. The 

gym library is a collection of test problems — environments 

— that you can use to work out your reinforcement learning 

algorithms. If you prefer, you can also clone the gym Git 

repository directly. This is particularly useful when you’re 

working on modifying Gym itself or adding environments. 

These environments have a shared interface, allowing you to 

write general algorithms. We will have to have pip and git 

installed. There are two coded python files to solve the gym 

environment. One contains the config for the neuroevolution 

process and the other one is the program that creates the 

neural networks and solves the game. In the first file, there 

will be an option to insert or change the environment of the 

game. It can be any game on the openai gym website. In this 

case, we are going to be using the Atari Neon Race Car game 

environment. The following will be the parameters: 

maximum steps (the maximum number of steps to take per 

single genome), episodes (the number of times to run a single 

genome), render (to render the game while the algorithm is 

learning), generations (the number of generations to evolve 

the network), checkpoint (to create a save point to start or 

resume the simulation) and num-cores (the number of cores 

to be allotted by the system for parallel execution). If you 

want to change the game, you will need to edit a few 

parameters. As an example, let's say we want to play 

Pacman. In order to play Atari games, we must use the ram 

version. Currently only ram versions are compatible with our 

program. Our program also provides the ability to continue a 

simulation after it finishes. When the simulation finishes, it 

will generate a checkpoint file. If we start a new simulation 

on the same game, we’ll be able to use this checkpoint file to 

pick up where the simulation left off. 

 
If we ever want to do better than take random actions at each 

step, it’d probably be good to actually know what our actions 

are doing to the environment. The environment’s step 

function returns exactly what we need. In fact, step returns 

four values. These are: observation (object): an environment-

specific object representing your observation of the 

environment. For example, pixel data from a camera, joint 

angles and joint velocities of a robot, or the board state in a 

board game; reward (float): amount of reward achieved by 

the previous action. The scale varies between environments, 

but the goal is always to increase your total reward; done 

(boolean): whether it’s time to reset the environment again. 

Most (but not all) tasks are divided up into well-defined 

episodes, and done being True indicates the episode has 

terminated; info (dict): diagnostic information useful for 

debugging. It can sometimes be useful for learning. 

However, official evaluations of your agent are not allowed 

to use this for learning. This is just an implementation of the 

classic “agent-environment loop”. Each time step, the agent 

chooses an action, and the environment returns an 

observation and a reward. 

 

Fig. 1. The Exact Architecture of the Game BOT is as 

Follows: 
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This shallow architecture was designed in such a way so as 

to save the computational cost. 

   The algorithm initially, generates a random action. The 

generated action is tested in the environment and the results 

are observed. A reward is computed for every action and its 

reaction. If the reward is greater than the threshold, then the 

record is inserted as a tuple to the game memory. Else, 

another random action is generated by the algorithm and this 

process keeps repeating itself until the algorithm completely 

learns to beat the game and actually beats it. 

IV. RESULTS  

 Initially, the game bot played the game in a very insensible 

manner. It was very hard to keep track of the actions that 

were generated and performed. At times, the bot just 

accelerated the car without steering left or right and bumped 

into another car or the side of the road. It kept doing the same 

action till it reached the finish line or ran out of time. The bot 

had lost and then tried to include a steering into the game. 

Then a brake and so on. After hours of learning the game, the 

game bot was able to perfect the game in every manner and 

was able to race the car first to the finish line with no hits or 

bumps. The bot has become a professional Artificial 

Intelligence gamer for that particular game.  
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