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Stability and Efficiency of the Positive Definite 

Quadratic Programming Algorithms 

Awatif M .A .Elsiddieg 

Abstract: In this paper we introduce some stable and 

efficiency algorithms for the positive definite quadratic 

programming   . Sections (1), introduce matrix factorizations QR 

factorization ,orthogonal transformation using Householder 

matrices ,  which  leads to our main work. In section(2) general 

consideration is given. In section (3) we introduce the basic 

concepts methods linear equality and inequality constraints that 

leads to our methods.  In section (4) we give some of the stable 

and efficiency algorithms for positive quadratic programming 

only using KKT-conditions. We conclude our paper by showing 

that there are  stable and efficient methods  for indefinite 

programming  as the extended Dantzig Wolfe method[20].    

    Keywords: KKT-conditions, QR factorization, active set 

methods, penalty and barrier functions, complementrity.  

I. INTRODUCTION 

Section (1): 

A. Basic Concepts: 

In this section we lay down the theoretical background 

needed in presenting the work of the following sections. We 

introduce some basic matrix factorizations that we use in our 

methods.  

B. Matrix Factorizations: 

Definition: (Positive Definite Matrices): A 

symmetric matrix A is positive definite if and only if 

0xAx
T

 

For all non-zero vectors  x .  This can be a difficult 

condition to verify, but there are equivalent definitions that 

are sometimes more practical.  For example, A will be 

positive definite if all of the eigen-values are positive.  Also 

if Gaussian elimination is applied to A without pivoting to 

transform A to upper triangular form:  
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and if 0, iiu  for all i, then A is positive definite 

similarly a symmetric matrix A is: 

*   Positive semi-definite if 0xAx
T

for all 

0x    (or equivalently, all the eigen values of 

A are non-negative). 
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* Negative definite if  0xAx
T

 for all x  (all the 

eigenvalues of A are negative) 

* Negative semi-definite if 0xAx
T

 for all x  (all the 

eigen-values of A are non-positive). 

*   indefinite of xAx
T

can take both positive and negative 

values (A has both positive and negative 

eigenvalues). 

Example: Consider the matrix: 
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




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
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



620

251

014

A  

Then           

2

332

2

221

2

1 64524 xxxxxxxxAx
T

  

    02233
2

32

2

21

2

3

2

2

2

1  xxxxxxx  

If 0x .  So A is positive definite, if the Gaussian 

elimination is up lied to A, then:

  



















1579.500

275.40

014

UA  

All the diagonal elements are positive the eigen values of A; 

(2.8549,   4.4760, 7.669)   are all positive 

The matrix:
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B  

is positive semi-definite but not positive definite 

2
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4644 xxxxxxxxBx
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When Gaussian elimination[25] is applied to B 
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000

250

024

UB   and the diagonal entries in U are 

the nonnegative 03,3 U  

The eigen values of B  are: (0, 3.1284, 7.6716) 

The matrix C:
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C  

is indefinite, For 
Tx )0,0,1( , 03 xCx

T
, but for   

Tx )0,1,1(  ,  03 xCx
T

 Gaussian elimination 

applied to C produces 
















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3077.1300

7333.40

053

UC and the matrix U 

has both positive and negative diagonal entries.  The eigen 

values of C are also both positive and negative (-5.4885, 

2.6662, 11.8223). 

II. AN ORTHOGONAL MATRIX 

FACTORIZATION: 

   The matrix factorization is based on entirely different 

principles, and applies in a quite different setting.  It uses 

orthogonal transformations and can be applied to any 

matrix.  The matrix A need not have an inverse; in fact, the 

matrix need not be square.  It is typically used when A is 

rectangular, in particular, when A has more rows than 

columns.  Its most common usage is in the context of least-

squares problems, but it is frequently used to represent the 

linear constraints in an optimization problem.  It is called a 

QR factorization because it represent A as: A =   QR 

where Q is an orthogonal matrix (i.e. Q
T
Q =  I) and R 

is an upper triangular (or “right” triangular) matrix.   There 

is a slight ambiguity in the definition of the QR 

factorization. 

The first chooses Q to be the same size as A and then 

R is    nxn ; the second chooses R to be the same size as A 

and, then Q is mxm the figure 

 

    The first form is all that normally required to solve least 

squares problems, the second form is often more useful 

when solving constrained optimization problems. 

Orthogonal matrix factorizations are most often used when 

solving least squares problems.  To see why, consider a least 

squares problem written in the form: 

 

2

2
min bxAimize   

where A is an mxn matrix, nm  .  least squares problems 

cannot be solved by applying elimination to the matrix A.  

When linear systems of equations are solved, the techniques 

of elimination result in a sequence of equivalent linear 

systems.  Elimination is not applied to least squares 

problems because the techniques of elimination do not leave 

the least-squares problem un changed.  However, if P is an 

orthogonal matrix so that   P
T
P  =  I,  then 

   
2 2

2 2

T T T T
Py Py Py y P py yy y     

That is an orthogonal transformation does not effect 

the 2-norm of a vector.   Hence 
2

2

2

2
)( bxAPbxA   

and so orthogonal transformation can be used to 

generate a sequence of equivalent least squares problems. 

Example:

 

2

2
min bxAimize

x
  
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This is equivalent to solving 

   2

32

2

321 17431325min  xxxxximize
x

  22

3 )12(42  x  

    The solution can be obtained via back substitution.  This 

is a sum of squared terms and the smallest value each term 

can achieve is zero.  The term (12)
2
  remains unchanged no 

matter what the values of  the xi are. 

The other three terms can be made equal zero by 

solving the triangular system of equations,  

1325 321  xxx  

1743 32  xx  

4x2 3   

The solution is    TT
xxxx )2,3,1(,, 321   if the 

matrix A has been factored as A  =  Q R 

Where Q
T
Q =  I  and R is an upper triangular, then 

2

2

2

2
bxQRbxA   

=  
2

2
bQxR T  
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Hence the QR factorization allows us to transform a 

general least-squares problems to a triangular – least – 

squares problems that can be solved via back 

substitution.[15]  

Example: (Generating A Basis Matrix Using the QR 

Factorization) 

Consider the matrix:
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An orthogonal factorization of A
T
 yields: 
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is a basis for the null space of A . 

The QR factorization method has the important 

advantage that the basis  Z can be formed in a numerically 

stable manner.  Moreover, computation performed with 

respect to the resulting basis Z are numerically stable. 

The LDL
T
 and Cholesky Factorization:- 

    These two matrix factorizations are primarily of interest 

when factoring a positive definite matrix A, although 

variants of the LDL
T
 factorization can be applied to more 

general symmetric matrices.  They are used in nonlinear 

optimization problems to represent the Hessian matrix of the 

objective function. If A is symmetric and positive definite, it 

can be shown that Gaussian elimination can always be 

applied without partial pivoting, with no danger of the 

method trying to divide by zero, and with no danger of near-

zero pivots that can lead to numerical difficulties. 

If no row interchanges are used the LU factorization 

takes the form: A = LU 

The first two factorizations are obtained by 

manipulating this formula. Let D be the diagonal matrix 

whose entries are the diagonal entries of   iiii udU ,,:   .  

Then define  UDU 1ˆ   so that UUD ˆ .   hence  

ULDA ˆ .  If A is positive definite, then it is also 

symmetric, so that:  

ULDADLULDUA TTTTTT ˆˆˆ   

It is then easy to verify that   
TLU ˆ  , so that 

A  =  LDL
T
 

This is the first of the new factorizations, a 

factorization of A into the product of a lower triangular 

matrix, a diagonal matrix, and the transpose of the lower 

triangular matrix. 

Slightly more can be deduced.  If A is positive 

definite then 0xAx
T

 for all   0x .   

Using the factorization:
  

   xLDxLxLDLxxAx TTTTTT
0  

                                DyyT  

where    y = L
T
x.  Since L is nonsingular (it is triangular and 

all of its diagonal entries are equal to 1), 0y   if and only 

if  0x    

Hence   
2

,0 i

i

ii

T ydDyy   

for all 0y  .  this can only happen if  di,i > 0 for all i.  

Hence D is a diagonal matrix with positive diagonal entries.  

It should be noted that the reverse is also true. i.e. if A can 

be represented as  A = LDL
T
  where D has positive diagonal 

entries, then A must be symmetric and positive definite.  If 

we discover that  di,i < 0 at some stage during the 

computation of the factorization, then A is not positive 

definite. This property will be useful when we apply 

Newton's method to multidimensional optimization 

problems. 

Example: A = LDL
T
.  To illustrate this factorization.  

Consider the positive definite matrix 


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




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8.13.01.0

3.05.12.0

1.02.04.1

A  

Then A can be represented as LDL
T
 where 





















11942.00714.0

011429.0

001

L   and 
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

















7374.100

04714.10

004000.1

D  

The second factorization is obtained easily from the 

first.  Since D has positive diagonal entries we can write 

DDD ˆˆ  

Where D̂   is a diagonal matrix with iiii dd ,,
ˆ  .  If 

we then define: DLL ˆˆ   

Then L̂  is also a lower triangular matrix and

TLLA ˆˆ   

The D̂   is often omitted, and we simply write A =  

LL
T
. This is the second of the factorization, also referred to 

as a Cholesky factorization. 

Orthogonal Transformations Using Householder 

Matrices:- 

Introduction:- 

We look at a special class of orthogonal matrices 

known as a Householder matrices.  We show how to 

construct a Householder matrix that will transform a given 

vector to a simpler form.  With this construction as a tool, 

we look at a transformation of a given nm  matrix A, 

(m > n) has rank n. 

Householder Transformations:- 

Let 
nIRu    be non-zero.  An nn   matrix 

H of the form: 

                            (1.1) 

is known as a Householder transformation.  When a 

vector x   is multiplied by H, it is reflected in the hyper-

plane span  u .  Householder matrices are symmetric 

and orthogonal.  They are important because of their ability 

to zero specified entries in a matrix or vector. In particular, 

given any non-zero   
nIRx , it is easy to construct   in 

(1.1) such that xH   is a multiple of  1e , the first column 

of I.  Noting that: 

Iuu
uu

uxu
xx

uu

uu
IxH

T

T

T

T

T















 ,

22
      (1.2) 

Householder Reflection:- 

Definition: If  
nIRu  and   0u  , then the matrix 

of the form:

 

2
T

uu
H I

T
u u

                           

is called the Householder matrix or Householder 

reflection and the vector u   is called the Householder 

vector. 

 

Proposition: 

The Householder matrix is (1) symmetric and   (2) 

orthogonal  (3) the Householder reflection reflects every 

vector 
nIRx  in the hyper-plane span   u  

Proof: Indeed, 

1)   H
uu

uu
I

uu

uu
IH

T

T

T

T

TT  22  

2)  

2

2















uu
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IHHHH

T

T

TT
 

 
  

I
uuuu

uuuu
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I

TT
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T

T


4

4  

To prove the third part of the assertion, we choose on 

the hyper plane span  u   an orthogonal basis 

 1n1 a,...,a  .   Hence iau  ,   (i = 1; n – 1) 

0i

T
au ,   (i = 1; n – 1)             and 

1111 ....


nn aaux  ,  then  

   1111 ...)(  nn aHaHuHxH      

2 2
2 ...1 11 1

T TT
uu uu uu

I u I a I annT T T
u u u u u u

  


      

    
        

     
 

 2
2 ( ) 2 (1 1

...1 11 1

T
T Tu u u

u u a u u a
u a anT T T

u u u u u u

  


 

    

     
         

    

  

1111 ...  nn aau                                   

i.e.,  the vectors x   and xH ,   have onto the hyper-

plane span   u  the same orthogonal projection

111 ....  nn aa   

Proposition: If 
nIRx  and 12

exxu  , then 

the vector xH ,  where  H is the Householder matrix 

denoted by (1), has the same direction as 1e    i.e., the 

Householder reflection H applied to the vector x  

annihilates all but the first component of the vector  x . 
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T
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Proof: Our aim is to determine for a nonzero vector 

x  the Householder vector u  so that xH   span    1e  

since 

 2
2 2

T
T Tu u x

uu u x
H x I x x x u

T T T
u u u uu u




   
 
 
 
 

 

and  xH  span   1e ,   then u   span  1,ex .  

by choosing  

                    1exu                                          

Obtain that: 

       11   xxxexxxu
TTT

                       

and 
2 2

12 ( )12
2

1

TT
x xu x

H x x u x x e
T T

u u x x




 

 
    

  

 

             0
2

22
1

2

1

1 









xx

xx
T

T

                                   

0222 1

2   xxxx
TT

     

            
2

2

2 xxx
T

                            

For this  choose  =  
2

x  we have  12
exxu      

and:       1

1

1
1

2

2
2 e

xxxx

xx
e

uu

xu
xH

TT

T

T

T









         

              121 exe                                        

Example: Let 
Tx ]362[  .  Find the Householder 

vector  u   and according to it the Householder 

transformation annihilates the two last coordinates of the 

vector x  . 

Solution: By proposition above we compute: 

112
7]362[ eexxu T   Choose the 

sign plus for coefficient of 1e  and we obtain 

Tu ]369[  .  Find the Householder matrix H that 

depends only on the direction of u  

 123

1

2

3
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22

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T
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7

1
xH  

The QR-Factorization with Householder Reflection 

Introduction: 

The idea is similar  to the Gauss elimination  in the 

LU-factorization language.  Given an  mn   matrix A 

(could be rectangular as well), we bring it into an upper 

triangular form (R) by multiplying it from the left 

appropriately by chosen Householder matrices.  We can 

assume that non of the columns of A is fully zero (such a 

column just corresponds to fully zero column in R, hence 

and then can be put back at the end). 

In the first step we eliminate all but the top entry in 

the first column of A.  We can do it by one single 

Householder matrix namely  1H a  is the first column of 

A.  The result: 

 

























xxx

xxx

xxx

xxxx

AaHA



0

0

0

....

11             

where  x denote a generic (usually non-zero).  Let 

 11 aHH   for brievely. Next we look at the second 

column of the matrix:   AaHA 11                                  

Cut off the first entry of the second column (since we 

do not want to change the first row any more) i.e., consider 

the vector 2
~a   of size  (n-1) formed from the underlined 

elements.  If this vector is zero, its only nonzero element is 

on the top, then already the second column is in upper 

triangular form, so we can proceed to the next column. 

If this cut off vector 2
~a  has non zero elements below 

the top entry, then we use a Householder reflection  2
~aH    

in the place of "cut off" vectors.  In the original space this 

means a  

Multiplication by the matrix:  





















0

)~(

0

0................001

2

2
aH

H

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The result is:  



























xx

x

xx

xxx

xxxx

AHA






00

....

....0

....0

....

122  

In the next step we consider the next column of A2 which 

has nonzero elements below the third row.  Again cutoff the 

top two entries of this vector and consider the vector  3
~a  of 

size (n-2) (underlined elements in A2).  We can find a 

Householder reflection  3
~aH  in   

2nIR , and if we 

multiply A2 from the left with   























00

)~(

0.........00

0

1

0

0

0.........0001

2

3

aH

H


 

then the result is: 



























x

xx

xxx

xxxx

AHA




000

00

0

....

122  

After at most (m-1) step, we clearly arrive at an upper 

triangular matrix R, hence, we have:     

RAHHHH mm  1221 .......                       

it is clear that all Hi matrices are orthogonal (they are 

Householder matrices on a subspace and identity on the 

component of that subspace) 

i.e.       A= QR, with     

1221 ...........  mm HHHHQ             

(recall that i

t

i

1

i HHH 
 ) Notice that we 

always multiply by orthogonal matrices, which is a stable 

operation. 

Problem: Find the QR – factorization of  



















102

230

321

A  

With the Householder reflections 

Solution: The first column vector is 



















2

0

1

1a  the 

corresponding Householder vector is:

 














 



2

0

51
~u  

with norm square  5210~ 2

2
u , hence : 

1 2
0

5 52
( ) 0 1 011

10 2 5 2 1
0

5 5

T
uu

H H a I





  

 

 
 
 
 
  
 

 

and   

2
5 5

2.236 0.894 2.2365

0 3 2 0 3 21 1
4 0 1.788 2.236

0 5
5

A H A


 

  

  

  


 
   
   
      
 

 

The next cutoff column vector is: 















5

4
3

~
2a , 

its norm is  
5

61~
22
a   and the corresponding 

Householder vector is: 


































788.1

492.6

5

4
5

61
3

~u

Hence its norm space 

 is 346.45~ 2

22 a , so  











859.0512.0

512.0859.0

346.45

~~2
)~(

2

Tuu
IaH  

From this we form the corresponding Householder 

matrix: 



















859.0512.00

512.0859.00

001

2H  



International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-4 Issue-5, March 2017  

10 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: E0719034517/2017©BEIESP 

and  

























896.000

862.2492.30

236.2894.0236.2

122 AHA  

This is the R matrix in the QR-decomposition To 

obtain Q we compute 

























384.229.894.

51.0859.0

768.0458.447.

21HHQ  

Hence  

.447 .458 .768 2.236 0.894 2.236

0 .859 .512 0 3.492 2.861

.894 .229 .384 0 0 0.896

A

    

   

 

   
   
      

 

 

Is the QR-decomposition. 

Householder QR Factorization:- 

Apply the Householder reflection to the matrix  

)( nmIRA nm  
 to obtain the QR-factorization. 

Example: Suppose 
45 IRA  and assume that the 

Householder matrices 1H  and 2H  have been computed so 

that: 





























x

x

x

xxx

xxxx

AHH

00

00

00

0

12  

Concentrating on the highlighted vector  























 , we 

determine a Householder matrix  3

~
H  such that: 









































0

0
~

3

x

H  

Choosing 3H  =  diag    
32 H

~
,I  , we get 





























000

000

00

0

123 xx

xxx

xxxx

AHHH  

Next consider the highlighted vector 











  and determine  

4

~
H   such that:

 























0

~
4

x
H  

Choosing 4H  =  diag    43

~
, HI  , we get: 

R

x

xx

xxx

xxxx

AHHHH 

























0000

000

00

0

1234  

y setting  4321 HHHHQ  , we obtain  

AAHHHHHHHHQR  12344321    

                  Q                  Q
T
     

Proposition:- If  )( nmIRA nm  
,  then there exist the 

Householder matrices   iH  such that 














nmHH

nmHH
Q

n

n

,.......

,.......

11

11
 














nmAHH

nmAHH
R

n

n

,.......

,.......

11

11
 

and  A =  QR, where 
mmIRQ   is orthogonal and 

nmIRR   is upper triangular 

Example: Find the Householder QR-factorization for 





















113

026

102

A  

In example (1) there has been found the Householder 

matrix for the transformation of the first column vector 

 T3,6,2   of A: 























623

236

362

7

1
1H  

Find that: 

2 6 3 2 0 1 49 15 5
1 1

6 3 2 6 2 0 0 4 8
1 7 7

3 2 6 3 1 1 0 2 3

H A

    

   

    

     
     
     
          
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To find  2

~
H , we compute the according Householder 

vector 

 



































2

204

0

1
20

2

4~u  

Hence:


















21

12

5

5
........~~

~~2~
2

T

T
uu

uu
IH  

and   




























5

52

5

5
0

5

5

5

52
0

001

~
, 212 HIdiagH  

and also: 

1 0 0
49 15 5

1 2 5 5
0 0 4 8

2 1 7 5 5
0 2 3

5 2 5
0

5 5

R H H A

  


  

 
 

 
 
   
   
   

    
 
  

 






























5

52
00

35

513

7

52
0

7

5

7

15
7

 

Find also the orthogonal matrix: 

1 0 0
2 6 3

1 2 5 5
0 6 3 2

1 2 7 5 5
3 2 6

5 2 5
0

5 5

Q H H

 


  



 
 
   
   
   

    
 
  

 

























14253

7456

01552

35

5
Q  

and check the result: 

15 5
7

7 7
2 5 15 0

5 2 5 13 5
6 5 4 7 0

35 7 35
3 5 2 14

2 5
0 0

5

QR A

 


 


   

 

 
 

   
   
   
   
   

  

 

Hence:

 

 

4
4 2

2 16 82 2
2

2 8 44 10
4 2

2

T
uu

H I I I
u uT


  

   





 
    

    
 
 

 












































5

4

5

8
5

8

5

16

10

01

48

816

5

1
I  






















5

4
1

5

8
0

5

8
0

5

16
1

 

Section (2): 

III. GENERAL CONSIDERATIONS: 

The structure of most constrained optimization 

problems is essentially contained in the following 

minimize   xf  

                              
nIRx  

subject to:   EixCi  ,0)(  

IixCi  ,0)(                 (2.1) 

Here  )(xf  is called the objective function. 

mixci ,...,2,1,)(   are the constraint functions.  E is 

the index set of equality constraints, I is the index set of 

inequality constraints.  Any point x  which satisfies all the 

constraints in (2.1) is said to be a feasible point and the set 

of all such points is referred to as the feasible region R.  We 

say that 
*

x   is a constrained local minimizer if  
*

x  is 

feasible and satisfies )()(
*

xfxf  , for all feasible  x  

sufficiently close to 
*

x .  A constraints iC  is said to be 

active at 
*

x  if  0)(
*
 xCC ii .   This means that all 

equality constraints are active.   
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Active constraints  at any point 
*

x  are defined by the set  

 

 0)(:)(  xCix i  

clearly E .The set 
* of active constraints at 

the solution of (2.1) is of some importance.  If this set is 

known, then the remaining constraints can be ignored 

(locally) and the problem can be treated as equality 

constraints problem with 
*E  .  This is because 

constraint with 
*E  can be perturbed by small amounts 

without affecting the local solution where as this is not 

usually true for an active constraint. 

 An example is given by 

Minimize 21)( xxxf   

Subject to  

01)(,0)( 2

2

2

12

2

121  xxxcxxxc . 

Clearly the solution is achieved at  
T

x 









2

1
,

2

1*
when the contour of  )(xf  is tangent 

to the unit circle.  Thus  2*  and the unit circle 

constraint )(2 xC  is active[18].  The parabola constraint 

)(1 xc  is inactive and can be perturbed or removed from the 

problem without changing 
*

x .It is assumed that the 

functions )(xCi are continuous which implies that R is 

closed. It is also assumed that )(xf is continuous for all 

Rx  and preferably for all 
nIRx . If  in addition the 

feasible region is nonempty and bounded then it follows that 

a solution 
*

x  exists.  In fact most practical methods require 

the stronger assumption that the objective and the constraint 

functions are also smooth is that their first and often second 

continuous derivatives exist. Methods of solution of (2.1) 

are usually iterative  [27],[28] ,so that a sequence    

,...,,
)3()2()1(

xxx ;  say is generated from a given point 

)1(
x , hopefully converging to or terminating at 

*
x . 

 Linearly Constrained Optimization:- 

   Here we examine ways of representing linear constraints.  

The goal is to write the constraints in a form that makes it 

easy to move from one feasible point to another.  The 

constraints specify interrelationships among the variables so 

that, for example, if  we increase the first variable retaining 

feasibility might require making a complicated sequence of 

changes to all the other variables. In the general case these 

constraints may either be equalities or in-equalities.  Since 

any in equality of the "less than or equal type may be 

transformed to an equivalent constraint of the "greater than 

or equal"  type, any problem with linear constraints may be 

written as follows: 

minimize )(xf  

subject to        











Iibxa

Eibxa

i

T

i

i

T

i

,

,
 

Each ai here is a vector of length n and each bi is a 

scalar.  E is an index set for the equality constraints and I is 

an index set of the in-equality constraints.  We denote by A 

the matrix whose rows are the vectors 
T

ia , and denote by b 

the vector of right hand side coefficients bi.  An example is 

given by a problem with linear constraints.   

 Consider the problem:- 

minimize  
4

3

3

2

2

1)( xxxxf   

subject   6321  xxx  

for this example     4,3,2,1  IE .   The vectors  

 ia  that determine the constraints are 

TT aa )001(,)321(
21
  

TT aa )100(,)010(
43
   

and the right hand sides are 

6 , 0 , 0 , 0 ,
1 2 3 4

b b b b     

In the following sections we will be discussing the 

optimality conditions.  In section (3) we derive optimality 

conditions when only equality constraints are present, i.e   

I .  In section (4) the conditions are derived for 

inequality constraints only i.e.  E .  The case when 

both equality and inequality constraints are present will be 

assumed up in section 1.6.   There we conclude by 

introducing KKT conditions. In section 1.7 we introduce the 

first order necessary conditions. 

Section (3): 

IV. LINEAR  EQUALITY AND INEQUALITY 

CONSTRAINTS:- 

In this section introduce the optimality conditions for 

linear equality and inequality constraints.  

1- Linear Equality constraints: 

 Here we discuss the optimality conditions for 

nonlinear problems, where all constraints are linear 

equalities 

          minimize 
nIRxxf ,)(  

           subject  to bxAT                (3.1) 
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and A is an nm matrix.  We assume that f is twice 

continuously differentiable over the feasible region.  We 

also assume that the rows of A are linearly independent, that 

is, A has full row rank.  The main idea is to transform this 

constrained problem into an equivalent unconstrained 

problem.  The theory and methods for unconstrained 

optimization can then be applied to the new problem to 

demonstrate the approach. Any problem with linear equality 

constraints bxA   can be recast as an equivalent 

unconstrained problem.  Suppose we have  a feasible 

direction.  Any feasible direction must lie in the null space 

of A, the set of vectors p satisfying Ap = 0.  Denoting  the 

null space of A
T
 and denoting N(A), the feasible region can 

be described by    )(, ANppxx  .   Let Z be an 

rn  null space matrix for A (with mnr  ).   Then the 

feasible region is given by:                

       

  Zvxx :   where 
rIRv               (3.2) 

 

the null space of A
T
 must have a basis.  Let the columns of 

the matrix Z form such a basis, then A
T
Z = 0, and every 

feasible direction can be written as a linear combination of 

the columns of Z.  Therefore if f satisfies (3.2),  P  can be 

written as  
ZPZ  for some vector ZP .In order to determine 

the optimality condition of a given feasible point 
*x , along 

a feasible direction  ZPZPP   

 * * *
( ) ( )

T T
f x Z P f x P Z G x P Z PZ Z Z                 (3.3) 

where   satisfies 10   and   is taken, 

without loss of generality as a positive scalar.  Now  (3.3) 

shows that if )(
*

xZgP
T

z  is negative then every 

neighborhood of 
*

x  will contain feasible points with a 

strictly lower function value.  Thus a necessary condition for 
*

x  to be a local minimum of (3.1) is that  )(
*

xZgP
T

z must 

vanish for every zP , which implies that: 

 

0)(
*
xgZ T

            (3.4) 

The vector  )(
*

xgZ T
 is termed the projected gradient of f 

at  
*

x .  Any point at which the projected gradient vanishes 

is termed a constrained stationary point. 

The result (3.4) implies that )(
*

xg  must be a linear 

combination of the columns of A; i.e  

 Aaxg
m

i

ii  
1

*
)(                  (3.5) 

for some vector   , which is termed the vector of 

Lagrange multipliers.  The Lagrange multipliers are unique 

only if the columns of A are linearly independent. 

Condition (3.4) is equivalent to (3.5) because every 

n-vector can be expressed as a linear combination of the 

columns of A and the columns of Z and hence )(
*

xg   can 

be written as ZgzAxg  )(
*

for some vector gz .  

Pre-multiplying  )(
*

xg  by 
TZ  and using (3.4), it follows 

that  0Z

T ZgZ , since ZZ T
is non singular by 

definition of a basis, this will be true only if 0
z

g  

Since  )(
*

xgZ T
, the Taylor series expansion (3.3) 

becomes: 

 * * *2
( ) ( ) 0.5

T T
f x Z P f x P Z G x P Z PzZ Z             (3.6) 

   (3.6)  indicates that if the matrix ZxGZ T )(  is indefinite, 

every neighbourhood of 
*

x  contains feasible points with 

strictly lower value of f.  Therefore a second order necessary 

condition for  
*

x  to be optimal for (3.1) is that the matrix 

ZxGZ T )( which is termed the projected Hessian matrix, 

must be positive semi-definite.  We summarize in the 

following theorem. 

Theorem (1): The necessary conditions for 
*

x to be a local 

minimum of (3.1) are the following: 

 

1)  bxAT 
*

 

2)   0)(
*
xgZ T

or equivalently Axg )(
*

,  and 

3)  ZxGZ T )(
*

 is positive semi-definite 

Now, if ZxGZ T )(
*

is positive definite, by 

continuity ZxGZ T )( is positive definite for all points in 

some neighbourhood of 
*

x .  If   is small enough then 

Z

T
PZx   will be made inside that neighbourhood. 

Hence, for all such   it holds that 

0)(
*

 z

TT

Z PZPxGZP  . 

From (3.6) this implies that  *
xf  is strictly less 

than the value of f for all  points in some neighbourhood of 
*

x .   Thus we summarize in the following theorem. 

Theorem (2): Sufficient conditions for 
*

x  to be a local 

minimum for (3.1) are:  

     1)  bxAT 
*

 

      2) 0)(
*
xgZ T

 
or equivalently:    

*
( )g x A ,  and 

      3)  ZxGZ T )(
*

 is positive definite 

For example: minimize   
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3

2

3

2

21

2

1 42)( xxxxxxf   subject to 

22 321  xxx  

since  Txxxxf 42,2,22)( 321  , then  at  the  

feasible  point )1,5.1,5.2(
*

x  the  gradient  of  f  is  

(3, -3, 6)
T
.   The  matrix A = (1, -1, 2), is easily verified that  

TT xgZ )0,0()(
*
 .  Thus, the reduced gradient vanishes  

at 
*

x  and the first – order necessary condition for a local 

minimum is satisfied at this point.  Checking the reduced 

Hessian matrix, we find that 

1 22 0 0
1 1 0* 4 4

1 0( ) 0 2 0
4 62 0 1 0 0 2 0 1

T
Z G x Z




 
 

                  

 

is positive definite at  
*

x .  Hence the second-order 

sufficiency conditions are satisfied, and  
*

x  is a strict local 

minimizer of f Note that  G(x*) itself is not positive definite. 

At any feasible point, the variable 1x  can be expressed in 

terms of 2x  and 3x  using 321 22 xxx  .  

Substituting this into the formula for )(xf , we obtain the 

equivalent unconstrained[16]. 

minimize   232

2

3

2

2 2432 xxxxx   

The number of variables has been reduced from three 

to two.  It is easy to verify that a strict local minimizer to the 

unconstrained problem is  1,5.1 32  xx .  The 

solution to the original problem is 
Tx )1,5.1,5.2(

*


with an optimal objective value of 5.1)(
*

xf . 

Consider the problem: minimize  

3

2

3

2

21

2

1 42)( xxxxxxf   

    subject to  22 321  xxx  

select   















 



1

0

2

0

1

1

Z , as a null space matrix for the 

constraint matrix A = (1, -1, 2).  Using the (arbitrary) 

feasible point   Tx 0,0,2 , any feasible point can be 

written as : 

vvZxx














 




















1

0

2

0

1

1

0

0

2

 ,  

for some   Tvvv 21 , . Substituting into f we obtain the 

reduced function 121

2

2

2

1 2432)( vvvvvv  .   

This is the same reduced function as before, except that now 

the variables are called v1 and v2 rather than x2 and x3. 

2- Linear Inequality Constraints: 

Consider the following problem: minimize  

 
nIRxxf ;)(                                 (3.7) 

subject to bxAT 
*

 

We first try to derive a characterization of the feasible 

point in the neighbourhood of a possible solution.  If the     

constraint is active at the feasible point 
*

x , it is possible to 

move a non-zero distance from 
\

x   in any direction without 

violating that constraint; i.e. for any vector PxP 
\

,  

will be feasible with respect to an inactive constraint if   is 

small enough. On the other hand, an active constraint 

restricts feasible perturbations in every neighbourhood of a 

feasible point.   Suppose that the i
th

  constraint is active at 
\

x , so that i

T

i bxa 
\

.  There are two categories of 

feasible directions with respect to an active inequality 

constraint. Firstly, if  P  satisfies :  0PaT

i .The 

direction P  is termed a binding perturbation with respect to 

the i
th

 constraint, since the i
th

 constraint remains active at all 

points  Px 
\

 for any    .   Secondly, if P  satisfies

0Pa
T

i . P  is thus termed a non-binding perturbation 

with respect to the i
th

 constraint.  Since 

  i

T

ii

T

i bPabPxa   , if 0  the i
th

 

constraint becomes inactive at the perturbed point 

Px 
\

.In order to determine whether the feasible point 

*
x  is optimal for (3.7), it is necessary to identify the active 

constraints. Let the t columns of the matrix  Â  contain the 

coefficients of constraints active at  
*

x , with a similar 

convention for the vector b̂ , so that 

bxAT ˆˆ *
 .The renumbering of columns of  Â  

corresponds to the order of the active constraints; so that  

1â  contains the coefficients of “first” active constraint.  For 

simplicity in the proof we assume that the columns of  Â  

are linearly independent; however, the derived conditions 

hold even when Â  does not have full column rank.  Let Z 

be a matrix whose columns form a basis for the set of 

vectors orthogonal to the columns of Â .  Every P  

satisfying 0ˆ 
T

PA  can therefore be written as a linear 

combination of the columns of Z. Consider the Taylor series 

expansion[24] of f about 
*

x  along a binding perturbation  

 

 ZPZPP      



 

Stability and Efficiency of the Positive Definite Quadratic Programming Algorithms 

15 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: E0719034517/2017©BEIESP 

             ,      ***
xgZPxfPZxf TT

ZZ    

                         

  Z

TT

Z PZPxGZP  
*25.0        (3.8) 

where   satisfies   10  , and    is taken 

without loss of generality to be positive.  As in the equality  

constraint case, (3.8) shows that if )(
*

xgZP TT

Z  is 

non zero for any  ZP ; then 
*

x  cannot be a local minimum.  

Thus a necessary condition for optimality of 
*

x  is that 

  0
*
xgZ T

; or, equivalently, that  

 

                        Axg ˆ*
                                   (3.9) 

The above condition ensures that f is stationary along 

all binding perturbations from 
*

x ,  are also feasible 

directions with respect to the active inequality constraints, 

the point 
*

x  will not be optimal if there exists any non-

binding perturbation P  that is a descent direction for f ( p ) 

is a descent direction for f at x  if 

    10,   xfPxf  for some 0\  ).  If 

such a direction exist, a sufficiently small positive step a 

long it will remain feasible and produce a strict decrease in 

f. To avoid this possibility, we seek a condition to ensure 

that for all P  satisfying 0ˆ PA T
,  it holds that 

  0
*

Pxg
T

.  Since we know already from (3.8) that  

 *
xg  is a linear combination of the columns of  Â ,  the 

desired condition is that: 

 

  0ˆ...ˆ
11

*
 PaPaPxg ii

T

                (3.10) 

where   0ˆ 
T

ia ,  i =  1, … , t 

The condition (3.10) will hold only if 0i ,  i =  

1, … , t  i.e  
*

x  will not be optimal if there are any negative 

multipliers.  To see why, assume that  
*

x a local minimum 

(so that (3.9) must hold), but that 0j   for some j.  

Because the columns of Â  
are linearly independent, 

corresponding to such a value of j there must exist a non-

binding perturbation P
 such that   

 

1ˆ Pa
T

j   ;     
jiPa

T

j  ,0ˆ
 

for such a  
P

, 

0ˆˆ)(
*

 j

T

jj

T

jj

T PaPaPxg   

and hence P  is a feasible descent direction,[31],[12] which 

contradicts the optimality of 
*

x .   Thus a necessary 

condition for a solution of (3.7) is that all the Lagrange 

multipliers must be non negative. By considering the 

Taylor-series expansion of f about 
*

x  along binding 

perturbation, we can derive the second order necessary 

condition that projected Hessian matrix  ZxGZ T *
must 

be positive semi-definite.  This condition is precisely 

analogous to the  second order necessary condition for the 

equality constrained problem. 

Theorem (3): If 
*

x  is a local minimizer of  f over the set  

 bxAx : , then for some vector 
*

  of Lagrange 

multipliers 

1) 
**

)( TAxg  or equivalently   0)(
*
xgZ T

 

2)   0
*
      

3)  0)(
**

 bxA
T

   and 

4)  ZxGZ T )(
*

 is positive semi-definite 

where Z is a null space matrix for the matrix of active 

constraints at 
*

x .  We also develop sufficiency conditions   

that guarantee that a stationary point of f is indeed a local 

minimizer.  For the sake of clarity, we only consider the 

case when Z is a basis matrix for the null space of Â . To 

illustrate that the positive-definiteness of the projected 

Hessian does not suffice to ensure optimality when there are 

zero Lagrange multipliers, consider the two dimensional 

example of minimizing 
2

2

2

1 xx    subject to 02 x .   Here 

we have: 

  






















20

02
)(,

2

2

2

1
xG

x

x
xg

 

let 










0

0*
x

 ,  so 










1

0
Â

;  and 










0

1
Z

 , 

therefore 
  Axg ˆ

0

0*











 with 0 . 

Although the projected Hessian is positive definite, 

since    2
*

ZxGZ T
,  

*
x  is not a local minimum, since 

any positive step along the vector (0,1)
T
 is a feasible 

perturbation that reduces f.  
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 The origin is not optimal because, although f is 

stationary along binding perturbation. One means of 

avoiding such complications is to include the condition that 

all the Lagrange multipliers be strictly positive, which 

guarantees that f will have a strict increase for any non-

binding perturbation with this approach we get: 

Theorem (4): The following conditions are sufficient for 

*
x  to be a strong local minimum for (3.7) 

1)   bxAT 
*

 ,   with bxAT ˆ*
   

2)   0)(
*
xgZ T

;  or equivalently  Axg ˆ)(
*
  ;  

3)  0i   i  =   1, …. ,  t;  and 

4)  ZxGZ T )(
*

 is positive semi-definite 

It is possible to state sufficient conditions even when 

zero multipliers are present, by including extra restrictions 

on the projected Hessian matrix to ensure that f has positive 

curvature for all constraints with positive Lagrange 

multipliers, but may be binding or non-binding for 

constraints with zero Lagrange multipliers.  Let Â  contain 

the coefficients of the active constraints with positive 

Lagrange multipliers, and let Z be a matrix whose columns 

span the null space of  
TA

ˆ .  In this case we can state the 

following theorem. 

Theorem (5): Sufficient Conditions for  
*

x  to be a strong 

local minimum of (3.1) are: 

(1)  bxAT 
*

 with bxA ˆˆ *
  

2)   0)(
*
xgZ T

; or equivalently  Axg ˆ)(
*
  ;  

3)  0i   i  =   1, …. ,  t;  and 

4)  ZxGZ T )(
*

 is positive definite.   

Consider the problem: 

         minimize  
2

2

3

1)( xxxf   

         subject  to  01 1  x  

At the point 
Tx )0,0(\     the active set consists of 

the upper bound constraint on x.  Writing this constraint as 

01  x   we find that )0,1(ˆ A   is the matrix of the 

active constraints.  Since   )0,0()( xg , then  for 

̂ˆ)( TAxg    and the first order necessary condition is 

satisfied at this point.  We now examine the second-order 

necessary conditions, using 
TZ )1,0(    as a basis matrix 

for the null space of Â .  Then 

 

02
1

0

20

00
)1,0()( 
















ZxGZ T

 
 

So the reduced Hessian matrix is positive definite at 
\

x .  The point 
\

x   is not optimal, however, since any 

nearby point of the from 
T)0,(     (with    small and 

positive) has a lower objective value.  In this problem Â  is 

an empty matrix.  Hence  Z+= I  and  











20

00
)( _ZxGZ T

 is not positive definite, the 

second-order sufficiency conditions are not satisfied at  
\

x . 

Section( 4): 

V. INTRODUCTION 

In this section we introduce the stability and 

efficiency of general quadratic programming algorithms ,we 

introduce the active set methods, penalty and barrier 

functions, complementary pivoting methods, the interior 

point methods ,the gradient projection methods ,Givens 

transformations using Householder matrices . 

Kuhn-Tucker Conditions: 

When a linearly constrained problem includes both 

equalities and inequalities, (4.1), the optimality conditions 

are combination of those given for the separate cases.  In a 

mixed problem, the active constraints include all the 

equalities as well as binding equalities, and there is no sign 

restriction on the Lagrange multiplier corresponding to 

equality constraints.  In this chapter we introduce what is 

called Kuhn-Tucker (KKT) -conditions for linearly 

constrained problems (Kuhn and Tucker 1951).  They 

combine the first order conditions for both equality and 

inequality problems.  Let us now define what is known as a 

Lagrange function. The Lagrange function  ),( xl  of 

problem (3.1) is defined by 

 

       )()(),( xCxfxL ii                 (4.2) 

 

The KKT - conditions for linearly constrained 

problems are described as follows. If 
*

x  is a local 

minimizer of problem (3.1), then there exist Lagrange 

multipliers    such that  ,
*

x  ,   

Satisfy the following system 

*  EixCii  ,0)(
*

  

*   IixCi  ,0(
*
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*     0,
*

 xlx                       (4.3) 

* Iii  ,0  

*   EUIixCii  ,0)(
*

  

Where x  is the gradient vector taken with respect 

to x   only.  The point 
*

x  which satisfies the condition is 

sometimes referred to as a KKT- point.  The final condition 

0)(
*
xCii   is referred to as the complementarily  

condition and states that both i   and  )(
*

xCi   

cannot be non-zero or equivalently, that in active constraints 

have zero multiplier.  In the next chapter we introduce the 

class of complementary pivoting methods[31], [30] ,[29].  

They basically solve KKT- conditions (4.3). 

 

Theorem(6) : (First Order Necessary Conditions) Suppose 

that   
*x is a local solution  to   

           )()(),( xCxfxl i

EVIi

i


         (4.4)     

the function   f  and  iC  in (1.7.1)  are continuously 

differentiable at  
*x .  Then there is a Lagrange multiplier 

vector  
*   with components  such that the following 

conditions are satisfied at   **,x   

1)  ),( ** xlx  =0                              (4.4. a) 

2)      EixCi  ,0
*

                   (4.4. b) 

3)     IixCi  ,0
*

                     (4.4. c) 

4)    Iii  ,0*                          (4.4. d) 

5)      EUIixCii  ,0
**               (4.4. e) 

The conditions (4.4) are often known as the karush-

Kuhn-Tucker conditions, or KKT- conditions. The 

conditions (4.4e) are complementarity conditions, they 

imply that either constraint i is active or 0* i , or 

possibly both.  In particular, the Lagrange multipliers 

corresponding to in active inequality constraints are zero, we 

can omit the terms for indice from and rewrite )( *xAi .   

From (4.4) this condition[23] ,[7] as: 

 

    )(,0
*

)(

****

*

xCxfxxl i

xAi

i 


           (4.5) 

A special case of complementarity is important and 

deserves its own definition.  

Definition:     (Strict complementarity): 

Given a local solution  
*x  of 

nx

xf


)(min  

Subject to  Eixci  ,0)(    

                  Iixci  ,0)(                    

and a vector 
*

  satisfying (4.4), we say that the strict 

complementarity condition hold if exactly one of 
*

  and 

)( *xci   is zero for each index  Ii .  in other words, we 

have  0* i   for each )(
*

xAIi  .Quadratic 

programming[24] represents a special class of non linear 

programming in which the objective function is quadratic 

and the constraints are linear.  That name was restricted to 

the specific problem of minimizing a convex quadratic 

function of several variables subject to linear constraints. 

When the function to be minimized is convex, the problem 

is well understood both theoretically and computationally 

[10].  In the case of convex problems -under certain 

assumptions- various methods are equivalent( [13],[23]  are 

realization of a general one and hence are equivalent.) In 

solving the general case when the function is non convex 

some of the above mentioned methods can still locate a local 

minimum , others can be modified to terminate successfully 

[13] , did modify, in  a stable way the active set method 

[10], for some discussion.  There  are also other methods 

designed for the general case [21].Other work on the 

problem exists, some of which is included in the references. 

We state the QP problem by : 

minimize     xgxGxxf TT
 5.0)(  

subject to   Eibxa i

T

i                               (4.6) 

Iibxa i

T

i  ,  

Where G is a symmetric nn  matrix E,I are finite sets of 

indices g, x  and   ia  , IEi   are vectors in  
n .  

The problem may be infeasible or the solution may be 

unbounded, however these possibilities are readily detected 

in the algorithm, so we assume that a solution 
*

x  exists.  If 

the Hessian  fG 2  is positive semi-definite, 
*

x  is 

unique Fletcher [10].  When the Hessian G is indefinite local 

solutions which are not global can occur. 

Equality Constraints: The vast majority of methods for 

solving problems with linear equality constraints are feasible 

point methods:  they start from a feasible point and move 

along feasible descent directions to consecutively better 

feasible points. 

In this section we study how to find a solution to equality 

constrains problem in the form 

Minimize xgxGxxf TT
 5.0)(                       (4.7) 

subject to        bxAT   
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It is assumed that A is nm   nm   matrix of 

full rank, 
mIRb .  If the  objective function is convex, 

this point will be a global minimizer of f.  In the more 

general case, there is no guarantee that the point will be a 

global minimizer.  In some cases it may not even be a local 

minimizer.  The assumption that A has full rank ensures that 

unique Lagrange multipliers   exist.  Here we describe a 

generalized elimination to solve (4.7)  [10]. 

Let S and Z be mn   and )( mnn   matrices 

respectively such that [S: Z] is non-singular, and in addition 

let ISAT   and 0ZAT
.  

TS   can be regarded as a  

left generalized inverse for A so that a solution of 

bxAT   is given by  bSx  , this solution is not unique 

in general and other feasible points are given by  

 bSx  where     belongs to the linear space, 

 

 0:   TA                             (4.8) 

which has dimension n – m.  the columns, 

nZZ ,....,1  of  Z  act as basis vectors for    so at any 

feasible point  x  any feasible direction    can be written 

as 

 
mnIRy,yZ                                (4.9) 

(Note:  Z here is the same as described in section (3),  

so any feasible point x   can be written as: 

yZbSx                                        (4.10) 

substituting into   xf   gives the reduced quadratic 

function 

 

       
1 1

2 2

T TT T
q y y Z GZ y g GSb Z y g GSb Sb    

(4.11) 

If  GZZT
 is positive definite then a unique 

minimizer 
*

y  exists which (from   0yq  )  solves the 

linear system 

 

         bGSgZyGZZ TT                       (4.12) 

*
x   is then obtained by substituting into (4.10) the 

matrix GZZT
 in (4.12), is often referred to as the projected 

Hessian matrix and denoted by AG  or sometimes ZG . 

To obtain   we pre-multiply  AgxG
*

 ,(see 

theorem (1)) by 
TS   to get:  *T

S G x g                              

(4.13) 

Depending on the choice of S and Z a number of 

methods exists.  One choice of particular importance is 

obtained by using the QR- factorization of the matrix A.  

This can be written 

 

  RQ
R

QQ
R

QA 121
0

:
0


















                     (4.14) 

where Q is n × n and orthogonal, R is m × m upper 

triangular, and Q1, Q2  are   n × m and n × (n-m) 

respectively.  The choices: 

1 2,TS Q R Z Q                                         (4.15) 

are readily observed to have the correct properties 

this scheme is due to [12], [10], refers to it as the orthogonal 

factorization method. The orthogonal factorization method 

is advantageous in that calculating Z and S involves 

operations with elementary orthogonal matrices which are 

very stable numerically.  Also this choice (Z = Q2) gives the 

best possible bound: 

 

  )G(KGZZK T                                  (4.16) 

on the condition number  )GZZ(K T
. 

We conclude this by introducing the method of Lagrange 

multipliers. The KKT- conditions (4.3) applied to (4.7)  

(Note : I )  yields the equations: 

   

0

0





bxA

AgxG 

                                (4.17) 

which can be rearranged to give the linear system 































b

gx

0A

AG
T 

                        (4.18) 

The coefficient matrix is referred to as the 

Lagrangian matrix and is symmetric but not positive 

definite.  If the inverse exists and is expressed as 




























UT

TH

0A

AG
T

1

T
                   (4.19) 

then the solution to (4.18) can be written 

             bTgHx
*

                           (4.20) 

            bUgT T 
*

                              (4.21) 

Using S and Z defined at the beginning of this section 

we get the following 

representation of the inverse 

Lagrangian matrix [10], 
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 

 

  GSSGSZGZZGZSU

GSZGZZZST

ZGZZZH

TTTT

TT

TT













1

1

1

       (4.22) 

Equations (4.22) prove that the Lagrangian matrix is 

non singular if and only if there exists Z such that the matrix 

GZZT
 is non singular. Furthermore  

*
x  is a local 

minimizer if and only if  GZZT
 is positive definite. 

 

4 - The Active Set Methods: 

Most QP problems involve inequality constraints[11].  

Here we consider only inequality constraints. Modification 

to include equality constraints is straight forward.  The 

general form of the problem is 

Minimize xgxGx5.0)x(f TT
                          (4.23) 

 

subject to  Ii,bxa i

T

i
  

where G is n × n and symmetric positive definite. 

The active set method is an iterative method.  It generates a 

sequence of feasible points ...,x,x
)2()1(

 which terminates 

in a finite number of steps at the solution  
*

x .  On iteration 

k a feasible point  
)k(

x ,  is known which satisfies the active 

constraints as equalities.  that is :  i,bxa i

)K(T

i . 

Also except in degenerate cases  i,bxa i

)K(T

i .  

Each iteration attempts to locate the solution to an equality 

problem in which only the active constraints occur. 
)1( K

x  

is obtained as follows:- 

 

Let  
)K(

   solve: 

minimize         ( ) ( ) ( )
0.5

T
K K T K

x G x g x       

subject to      i,bxa i

)K(T

i  

which is equivalent to 

minimize      
TxT

gG
)(

5.0                 (4.24) 

subject to    i,0a
T

i  

where 
)K(

g  is defined by 
)K()K(

xGgg  .  If 
)K(

  is 

feasible with respect to the constraints not in  , then the 

next iterate is taken as 
)K()K()1K(

xx 


.   If not then 

a line search is made in the direction of 
)K(

  to find the 

best feasible point.  This can be expressed by defining the 

solution of (4.24) as a search direction 
)K(

  and choosing 

the step length   
)(K  to solve 

 













 


 )(

)(

)( min,1min
KT

i

KT

ii

i

K

Sa

xab


                          (4.25) 

  so that 
)K()k()k()1K(

Sxx 


,  If  1  in (4.24) 

then a constraint becomes active, defined by the index (P 

say) which achieves the minimum in (4.25) and this index is 

added to the index set  .If  
)K(

x  (that is  0
)K(
 ) 

solves the current problem (4.23),  then it is possible to 

compute multipliers (
)(K  say)  for the active constraints as 

described in section (2), the vectors 
)K(

x   and 
)K(

 ,  then 

satisfy all the first order conditions (Theorem( 3)) except 

possibly the condition 0
i
 .  Thus a test is made to 

determine whether     i0
)K(

i , if so then the 

first order conditions are satisfied and these are sufficient to 

ensure a global solution.  Otherwise there exists an index, q 

say, q , such that  0)( K

q . In this case, it is possible 

to reduce )x(f   by allowing the constraint q to become 

inactive.  Thus q is removed from   and the algorithm 

continues as before by solving the resulting problem (4.24).  

If there is more than one index for which  0)K(

q  , then it 

is usual to select q to solve: 

 
)K(

i
i

min 


                                         (4.26) 

To summarize the algorithm, therefore, if  
)K(

x  is a given 

feasible point and    is the corresponding active set, then 

the active set method is defined as follows: 

   (a)    Given 
)1(

x   and   ,  set  K = 1   

    (b)   If  0  does not solve (4.26) go to (d) 

    (c)  Compute Lagrange multipliers  
)K(

   and  solve 

(4.26).  If  0
)K(

q



  terminate with  

)K(*
xx  , 

otherwise remove q  from  . 

    (d)   Solve (4.24) for  
)K(

S  

    (e)    Find 
)K(  to solve (4.25) and set 

)K()K()K()1K(
Sxx 


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      (f)    If  1)K(    add  P to    

      (g)   set  K = K + 1  and go to (b) 

The main effort in active set methods devoted to solve 

(4.24), which is an equality constraints problem.  If 
)(KA   is 

the matrix whose columns are the vectors iai , , then 

(4.24) becomes: 

minimize               )(5.0 KT gG   

subject to      0)( TKA                       (4.27) 

One way to solve (4.19) is to use the generalized elimination  

method described in section (2) so  
)(K

   is obtained as 

follows:  Solve the system: 

 

  )()()()()( KTKK

A

TKK gZGZZ     (4.28) 

Where  
)()()( .0

K

A

KTK AZ   is thus obtained 

by: 

)()()( K

A

KK
Z                               (4.29)   

(4.28)  and (4.29) are special cases of (4.12) and (4.10) 

respectively. Lagrange multipliers are recovered by 

 
)()( KTK

gS . 

Finally we add that Gill and Murray extended the above 

algorithm to cover the case when G is indefinite [13]. 

Example: Consider minimizing 

      2

3

2

2

2

1 212
2

1
)(  xxxxf                      

Subject to non-negativity constraints ( x  0  ).   The 

gradient for this function is:
  

 Txxxxf 2,1,2)( 321                         

Starting at 
Tx )1,1,1(0   we have   

)3,2,1(0 f , hence 
Tp )3,2,1(0  .    The break 

points are, therefore, )3/1,2/1,(  and they are 

reordered into the sequence 

 3210 ,2/1,3/1,0  .     

On     ,3/1,0  

    
1 2 2 2

( ) (1,1,1) 1, 2, 3 1 (2 2 ) (3 3 )

2

TT
q f               

 

 

The minimum is obviously at 1 , which is outside the 

current subinterval.  So we set  03 x  and continue. 

On 2/1,3/1 ,

 1)22()1(
2

1
)( 22 donwtq               

   The minimum is again at 1  which is still outside the 

current subinterval.  So we set  02 x  and continue. 

On   ,2/1 ,  2

2 cos)1(
2

1
)( tq                 

   The minimum is again at  1 , which is in the current 

subinterval.  So we set 211  x .  The resulting next 

point  
Tx )0,0,2(

1
   turns out to be optimal. 

With the Armijo backtracking procedure outlined in  

 kkkk fxxpx 1  we would try 1  first.   This 

yields 

( ((2, 1, 2) )) ((2, 0, 0) ) (1 4) / 2 (1 4 9) / 2 ( ).0
T T

f P f f x        

 

Lemma: Let A has full row rank, and assume that the 

reduced Hessian matrix GZZT
   is positive definite.  Then 

the KKT- matrix:

 










0A

AG T

 

is nonsingular, and hence there is a unique vector pair 

 **,x   satisfying 

           

 (4.30) 

Proof: Suppose there are vectors  w  and v such that  

                                                   

(4.31) 

Since  0Aw , we have the  form (4.31) that 

    GWw
v

w

A

AG

v

w
T

TT



























0
0       (4.32) 

Since w lies in the null space of A, it can be written  

as: 

w = Zu  for some      vector   
mnIRu  .  Therefore, we 

have 

(4.33) 

 

Which by positive definiteness of GZZT
 implies that  

0u .   Therefore, 0w , and by (4.31) 0vAT
.   Full 

row rank of A then implies that  0v   We conclude that 

equation(4.31) is satisfied only if 

0w   and  0v ,  so the 

matrix is nonsingular as 

claimed. 

























 

b

gx

A

AG T

*

*

0 

0
0


















v

w

A

AG T

GZuZuGWw TTT 0
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Example: Consider the quadratic programming problem 

Minimize 

 
2 2 2

( ) 3 2 2.5 2 2 8 3 31 1 2 1 3 2 2 3 3 1 2 3q x x x x x x x x x x x x x          

subject to :      
0

3

32

31





xx

xx
 

We can write this problem in the form 

minimize    cxxGxxq
TT 

2

1
)(  

Subject to      bxA   

By defining 











































3

3

8

,

421

252

126

CG  




















0

3
,

1

1

1

0

0

1
bA  

The solution 
*

x   and optimal Lagrange multiplier vector  

*
  are given by:

 
  TT

x )2,3(,1,1,2 **
   

In this example, the matrix G is positive definite, and the 

null-space basis matrix can be defined as 
TZ )1,1,1(   

In section (2) it is shown that how the QR 

factorization is used, in a generalized elimination method, to 

deal with equality constraints QP problems (I =  ), also  

the active set method is described to solve inequality 

constraints QP problems.   

2 -Penalty and Barrier Functions: 

Here we discuss non linear programming problems 

with equality and in- equality constraints.  They approach 

used is to convert the problem into an equivalent 

unconstrained problem or into a problem with simple 

constraints.  However, in practice, a sequence of problems 

are solved because of computational considerations.  

Basically, there are two alternative approaches.  The first is 

called the penalty [25],[26], or the exterior penalty function 

method in which a penalty term is added to the objective 

function for any violation of the constraints.  The second 

method is called a barrier or interior penalty function 

method, in which a barrier term that prevents the points 

generated from leaving the feasible region is added to the 

objective function.  The method generates a sequence of 

feasible points whose limit is an optimal solution to the 

original problem. Methods using penalty functions 

transform a constrained problem into a single un constrained 

problem or into a sequence of unconstrained problems.  The 

constraints are placed into the objective function.  Consider 

the following problem with the single constraint )0x(h   

minimize  )x(f  

subject to  0)x(h       

suppose that this problem is replaced by the following 

unconstrained problem, when 0   is a large number 

minimize  )x(h)x(f   

     subject to  1Ex      

Example: Consider the following problem 

minimize   
2

2

2

1 xx   

subject to   01xx 21   

The optimal solution lies at the point 








2

1
,

2

1
 and has 

objective value  
2

1
. Now consider the following penalty 

problem, where 0   is a large number 

minimize   221

2

2

2

1 1xxxx    

subject to     121 Ex,x   

Note that for any  0 , the objective function is convex.  

Thus a necessary and sufficient condition for optimality is 

that the gradient of   221

2

2

2

1 1xxxx     is equal 

to zero yielding 

  01xxx 211    

  01xxx 212    

Solving these two equations, we get   

 12/21  xx .   Thus, the optimal solution of the 

penalty problem can be made arbitrarily close to the solution 

of the original problem by choosing    sufficiently large. 

Example: consider the problem: minimize:  

21xx)x(f   

subject to: 04x2x)x(g 21   

Suppose  that  this  problem  is  solved  via  a  penalty   

method  using  the  quadratic  penalty  function.    Then a 

sequence of un-constrained minimization[8], [9] ,problems 

minimize ),( xII  
2

2121 )42(
2

1
 xxxx   is 

solved for increasing values of the penalty parameter   .  

The necessary conditions for optimality for the 

unconstrained problem are 

  042 212  xxx   
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  0)2(42 211  xxx   

For  
4

1
   this yields the solution 

14

4
x)(x,

14

8
x)(x 2211















  

which is a local as well as a global minimizer. (The 

unconstrained problem has no minimum if  
4

1
 ).  Note 

that )(x   is infeasible to the original constrained problem, 

since 

4
14

16
4x2x))(x(g 21 









14

4





 

At any solution  )(x   we can define a Lagrange multiplier 

estimate  
14

4
))(x(g









  

As   tends to   we obtain  

2

4
11

2
lim)(lim 1 




 



x , 

1

4
11

1
lim)(lim 2 




 



x  

and indeed  T*
1,2x   is the minimizer for the 

constrained problem.  Further   

1

4
11

1
lim)(lim 






 



 

and indeed 1*   is the Lagrange multiplier at 
*

x  

To demonstrate the III conditioning of the penalty 

function, we compute the Hessian matrix: 

  


















412

12
),(x2

x  

It can be shown that its condition number is 

approximately 425 , when   is large Hessian matrix is 

ill conditioned. 

3- Complementary Pivoting Methods: 

   Complementary pivoting methods[27],[30] to solve QP 

problems have been suggested as an extension of the 

simplex method for linear programming (LP) problems. 

Here we give a brief description of the method to solve 

 

minimize  xgxGx
TT

5.0                                    (4.34) 

subject to  0,0  xxAT
 

Here G is  nn  and  A is  mn  

The method merely solves the KKT-conditions for (4.34).  

Introducing multipliers    for the constraints bxAT   

and u   for the bounds  0x .   Also define the slack 

variables V  by  bxAV T  .  The KKT – Conditions 

become:-  

gAxGu    

            
bxAV T                 (4.35) 

vx ,,    and  0u  

and   0 xuv
TT

  

The method assumes that G is positive definite which is a 

sufficient condition that any solution to (4.35) is a solution 

to (4.34).  The system (4.35) can be expressed in the form 

qZMW                                (4.36) 

0,0  jj Zw   for  j =  1, … , n 

0jj Zw   for  j =  1, … , n 

Here  jj ZW ,   is a pair of complementary variables. 

A solution  ZW , to the above system is called a 

complementary feasible solution.  Moreover, such a solution 

is a complementary basic feasible solution where 

Where   




















x
Z

v

u
W ,  

,
0 













TA

AG
M    and   












b

g
q  

All methods for solving (4.36) have some features 

common.  They carry out row operations on the 

equations(4.36) in a closely related way to LP.  Let  t   be 

the   )(2 mn  -vector which contains the elements of  W  

and  Z  as its components.  Partition the matrix  MI :   

into :    NB MMMI ::                            (4.37) 

So that BM  is )()( mnmn  and non 

singular.  Partition t   accordingly into: 









N

B

t

t
t  (4.38)

So that  Bt  contains the components corresponding to the 

columns  BM  and  Nt   contains the   components 

corresponding to the columns of   MN .   

define the two sets B and N by : 
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B = { iti :  is a component of  Bt  }                   (4.39) 

N =  { iti :  is a component of  Nt  } 

At a general stage, a tableau representation 

  q
t

t
MI

N

B









:                                       (4.40) 

of equation (4.36) is available, where NB MMM 1\   and  

qMq B

1\  .  The variables have the values  
\qt B    and  

0Nt .  Bt  are called the basic variables and Nt  are 

called the non-basic variables.  A variable  rt ,  Nr , is 

chosen to be increased and effect on Bt   from (4.40) is 

given by 

rrB tmqt
\\                                           (4.41) 

where 
\

rm   is the column of  
\M   corresponding to the 

variable tr.  An element Biti , , becomes zero, 

therefore, when 

ir

r
m

q
t

\

 .  This determines some variable  

tP which has become zero, and so P and r are interchanged 

between B and N as in LP.  The tableau is then rearranged 

by making row operations which reduces the old tr column 

of the tableau to a unit vector.  The algorithm terminates 

when 0q  and when the solution is complementary, that 

is NWBZ ii     and  BWNZ ii    for 

all i. Here we give a general description of what is called the 

principal pivoting method for  solving (4.40).  The principal 

pivoting method is initialized by tB = w,  tN = Z, M’ = - M 

and  

    = q this is  complementary[27], so the algorithm 

terminates if     > 0.  If not there is an element ts,  BS   

for which 0' sq , (the most negative is chosen if more 

than one exists), the complementary variable Nrtr ,  is 

then chosen to be increased (tr  and  ts  are complementary if 

(tr, ts)  can  be  identified as  ii zw ,   for some i).  The effect 

on the basic variables by virtue of (4.41).   As long as all 

non negative variables stay non negative, then tr  is 

increased until 0st ,   then r and s are interchanged in B 

and N and the tableau is updated.  The resulting tableau is 

again complementary so the iteration can be repeated. It 

may be however, that tr is increased then a basic variable tp

 0. In this case a pivot interchange is made to give a non-

complementary tableau. On the next iteration the 

complement of tp is chosen to be increased.  If this causes ts

 0  then complementarity is restored and the algorithm can 

proceed as described above.  However a different tp may 

become zero in which case the same operation of increasing 

the complement is repeated.  Excluding degeneracy, each 

iteration increases ts [6],[28],[29] ,so eventually 

complementarity is always restored. 

In [6] a proof was given that the principal pivoting 

method solves (4.36) when G is positive definite.  In the 

case when G is positive semi-definite a proof appeared in 

[2] showing that the method might work.   This can be 

justified due to the fact that the  principal pivoting method 

works when M belongs to special classes of matrices.  In 

fact the resulting M when G is positive definite or positive 

semi-definite belongs to one of these classes (for more about 

that see [6]  ,[21] constructed an example which shows the 

failure of the principal pivoting method to solve (4.36)  and 

hence (4.34) when G is indefinite.  

4- Interior-point methods: 

The interior-point approach can be applied to convex 

quadratic programs through a simple extension of the linear 

programming algorithms. The resulting primal-dual 

algorithms are easy to describe and are quite efficient on 

many types of problems.  Extensions of interior point 

methods to non-convex problems [24]. For simplicity, we 

restrict our attention to convex quadratic programs with 

inequality constraints, which we write as follows: minimize 

    cxxGxxq
TT 

2

1
)(           (4.42) 

Subject to:  bxA    

Where G is symmetric and positive semi definite and where 

the nm   matrix A and the right-hand side b are defined 

by :- 

     mIbbaA
IiiIii ,...,2,1,, 


 

(If the equality constraints are also present, they can be 

accommodated with simple extensions to the approaches 

described below).   Rewriting  the KKT - conditions in  this 

notation, we obtain: 
0 CAxG T 

 

0bxA  

  mibxA ii
,...,2,1,0   0  

By introducing the slack vector 0y , we can rewrite 

these conditions as: 
0 CAxG T 

 

0 byxA  

miy ii ,....,2,1,,0  

0),( y                 (4.43) 

Since we assume that G is positive semi definite, these 

KKT- conditions are not only necessary but also sufficient 

[24] , so we can solve the convex quadratic program (4.42) 

by finding solutions of the system (4.43). 

Given accurent iterate ( ,, yx )  that satisfies   0, y , 

we can define a complementary measure   by 
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m

yT
                                           (4.44) 

We derive path-following, primal-dual methods by 

considering the perturbed KKT- conditions given by 

0);,,( 

























eeY

byxA

cAxG

yxF

T





                  (4.45) 

   Where  Y  = diag (y1, y2, … , ym),      =  diag 

 m ,...,, 21 ,  e = (1,1,1,…,1)
T
  and   1,0 .  The 

solution of (2.7.4) for all positive values of    and   

define the central path, which is a trajectory that leads to the 

solution of the quadratic program as     tends to zero. 

By fixing   and applying Newton's method to  

(2.7.4) we obtain the linear system: 

































































eYe

r

rd

y

x

Y

IA

AG

p

T

0

0

0

    (4.46)

byxAr

CAxGrwhere

p

T

d



 
                            (4.47) 

We obtain the next iterate by setting 

      


,,,,,, yxyxyx  

Where   is chosen to retain the inequality   ,y  

and possibly to satisfy various other conditions. 

5- The Gradient Projection Methods: 

  The active set and working set change slowly, 

usually by a single index at each iteration [28],[29].  This 

method may thus require many iterations to converge on 

large-scale problems.  For instance, if the starting point 
ox  

has no active constraints, while 200 constraints are active at 

the (non degenerate) solution, then at least 200 iterations of 

the active-set method will be required to reach the solution. 

   The gradient projection method allows the active set to 

change rapidly from iteration to iteration.  It is most efficient 

when the constraints are simple in form-in particular when 

there are only bounds on the variables.  Accordingly, we 

restrict our attention to the following bound-constrained 

problem: 

  

uxtosubject

CxxGxxq
TT





1

2

1
)(min

                     (4.48) 

   Where G is symmetric and l  and u  are vectors of lower 

and upper bounds on the components of x .  we do not may 

any positive definiteness assumptions on G in this section, 

because the gradient projection approach can be applied to 

both convex and non convex problems.  The feasible region 

defined by (4,48) is sometimes called a "box" because of its 

rectangular shape.  Some components of x  may lack an 

upper or lower bound, we handle these cases formally by 

setting the appropriate components of l and u to    and 

  respectively. 

Each iteration of the gradient projection algorithm 

consists of two stages.  In the first stage we search along the 

steepest descent direction from the current point  x , that is, 

the direction g , where CxGg  , whenever abound 

is encountered, the search direction is "bent" so that it stays 

feasible.  We search along the resulting piecewise-linear 

path and locate the first local minimizer of q, which we 

denote by 
cx  and refer to as the Cauchy point, [24].  The 

working set is now defined to be the set of bound  

constraints that are active at the Cauchy point, denoted by 

)( cxA .  In the second stage of each gradient projection 

iteration, we explore the face of the feasible box on which 

the Cauchy point lies by solving a sub problem in which the 

active components ix   for )( cxAi  are fixed at the value 

c

ix . 

Givens Rotations:- 

   The QR factorization of a matrix[24],[25] can be 

computed using Givens rotations.   A Givens rotation is any 

matrix of the form:

























1

1

1

cs

sc

                   (4.49) 

Where    122  sc .  the i and j subscript in Gij 

correspond to the row numbers associated with the c's :  The 

first c is in row j and the second c is in row i.   Observe that 

the intersection of row i  and row j with column i and 

column j for Gij is the 22  matrix 








 

cs

sc
. 

This matrix is orthogonal since multiplication by its transpose 

yields I: 

2 2
0 1 0

2 2 0 10

T
c s c s c s c s c s

s c s c s c s c c s

   
  

 

          
                    

. 

Similarly, matrix (4.49) is orthogonal since 

IGG ij

T

ij  .  Matrix (4.49) is called a rotation for the 

following reason:  If two vectors x and y satisfy the relation 
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














 










2

1

2

1

cossin

sincos

x

x

y

y




,                     (4.50) 

then y is x rotated by the angle    (see the Figure )     

 

   Consequently, multiplying a vector by the Givens rotation 

(4.49) is equivalent to rotating two components of the vector 

through the angle    arc cs /tan  while  leaving  the 

other components  intact . 

Given a vector x with two components and defining 

2

2

2

1

1

xx
c

x


    and   

2

2

2

1

2

xx

x
s


 ,              (4.51) 

Observe that  122  sc   and 











 
















 

0

2

2

2

1

2

1 xx

x

x

cs

sc
           (4.52) 

 Utilizing relation (4.52), we can construct a Givens rotation 

that annihilates a particular matrix element.  To QR factor 

A, we multiply A by a sequence of Givens rotations, 

annihilating elements beneath the diagonal to obtain the 

upper triangular matrix R.  Finally, Q is the product of 

rotations. 

We illustrate this algorithm with the matrix 

























39540200

22379120

11415390

A . 

The factorization starts with column 1 of A:

 
















200

120

90

. 

   Referring to (4.51) and identifying x1 with 90 and x2 with 

120, the Givens rotation G21 that annihilates the second 

component of column 1 is:  

















































100

0
5

3

5

4

0
5

4

5

3

100

0
150

90

150

120

0
150

120

150

90

21G . 

Pre-multiplying A by G21 yields a matrix that we denote A21: 

 

.6 .8 0 90 153 114 150 155 110

.8 .6 0 120 79 223 0 75 22521 21
0 0 1 200 40 395 200 40 395

A G A

  

      

 

     
     
          

 (4.53) 

  Since each coefficient on the right side of (4.53) is a 

multiple of 5, we extract the factor 5 to obtain:  

 

























79840

45150

223130

521A . 

Referring to (4.51) and identifying x1 with 30 and x2 

with 40, the Givens rotation G31 that annihilates the third 

component in column 1 of A21 is 

 





















6.08.

010

8.06.

31G
 

Multiplying A21 by G31 gives 

.6 0 .8 30 31 22 10 5 10

5 0 1 0 0 15 45 25 0 3 931 31 21
.8 0 6 40 8 79 0 4 13

A G A

  

    

 

     
     
          

. 

At this point, the sub-diagonal elements in the first column 

of A31 are zero.  Proceeding to the second column of A31, the 

Givens rotation G32 that annihilates the third element in the 

  

second column is:

 




















6.8.0

8.6.0

001

32G  

Pre-multiplying A31 by G32 yields R: 

1 0 0 10 5 10 2 1 2

25 0 .6 .8 0 3 9 125 0 1 132 31
0 .8 .6 0 4 13 0 0 3

R G A

 

   



     
     
          

 

To summarize, 

 
AGGGAGGAGR

21323131 32213232  .       (4.54). 

Since each Givens rotation Gij is an orthogonal matrix, 

IGG ij

T

ij  .  multiplying the identity (2.9.6)   by
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TTT GGG 323121  gives us the relation:

AAGGGGGGRGGG TTTTTT  213132323121323121 . 

It follows that A = QR, where
TTT GGGQ 323121 .  In 

the example above, the QR factorization can be expressed: 

 

90 153 114 45 108 44 2 1 2
1

120 79 223 60 19 108 125 0 1 1
125200 40 395 100 60 45 0 0 3

A

  

     



       
       
              

  

where the first factor on the right side is 
TTT GGGQ 323121 , 

and the second factor is R. For a general  nn  matrix, we 

annihilate elements 2 through n in the first column using the 

sequence of Givens rotations   13121 ,...,, nGGG .  then 

elements 3 through n in the second column are annihilated 

using the sequence of Givens rotations  24232 ,....,, nGGG  .  

we continue in this way.  The last step annihilates element n 

of column n – 1 using 1, nnG .  Finally, Q is the product of 

the transpose of each rotation. Factoring a matrix using 

Givens rotations is a little slower than factoring a matrix 

using Householder reflections since the Givens scheme 

requires about twice as many multiplications. 

VI. CONCLUSION  

The work reported in this paper gave no account to the 

special structures that the matrix of constraints A might 

have.  The work is ideal when A is dense, that is, full of 

non-zero elements. There are many stable and efficient 

methods for solving quadratic programming as Steepest 

decent methods, DFP methods, Dantzig and the extended  

Dantzig Wolfe method which solve quadratic functions for 

definite and indefinite Hessian matrices. 
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