
International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-4 Issue-1, February 2016  

18 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: A0696024116/2016©BEIESP 

Standardisation in Software Defined Radio 

Amit Kumar 

Abstract: Software Radio as a radio and communication 

technology has evolved with the evolution of digital electronics. It 

has undergone many changes in terms of technology and uses. 

With the advent and deployment of software defined radio (SDR) 

the radio is no longer the physical manufacturing of a single 

waveform but a computer host onto which different waveforms 

can be loaded. This paper provides an insight into the efforts to 

standardise the configuration and operation of software defined 

radio. The software communication architecture has been 

developed to assist in the development of SDR communication 

systems and captures the benefits of most recent technology 

advances to greatly enhance the interoperability of 

communication systems and reduce development and deployment 

costs. 

         Keywords: Software Radio, Software Defined Radio, SCA, 

STRS, CORBA, ASI, POSIX, RTOS,  

I. INTRODUCTION 

SDR is a type of radio communication system where 

communication is carried out by the use of software on 

embedded system or personal computer instead of 

implementing hardware such as filters, amplifiers, mixers, 

detectors, modulators/ demodulators. SDR are capable of 

transmitting and receiving a wide spectrum of frequency. 

When the data from a source is converted into digital 

format, the remaining activities involved in radio are carried 

out with the help of software driven automated functions. 

SDR further optimizes the tactical information system as 

embedded software used in SDR helps in the dynamic 

selection of the communication channel. The number of 

digital service users is increasing resulting into the improved 

adoption rate of software defined radio. Public safety, 

military and commercial use are the three major end-use 

applications of SDR systems. The demand for SDRs is on 

the rise owing to efficiency, cost effectiveness and 

incorporation of latest technology supporting multiband, 

multiservice, multistandard and multichannel waveforms on 

a single platform.[1][2] 

1.1. Issues for Adoption 

Modernization programs being carried out by several 

countries such as South Korea, India, Germany, Japan, US 

etc and the interoperability provided by SDR are major 

driving forces for SDR. The issues faced in the integration 

of the various sub systems and the variety in each of the sub 

systems pose a challenge to the implementation of SDR. 

This is where standardisation plays a significant role in 

facilitating handshaking. Further, the development of 

software platforms, technologies and tools, which allow 

flexible specification, design and implementation of radio 

systems and its compatibility with the legacy systems, poses 

another significant challenge.  

 
 

 

Revised Version Manuscript Received on May 18, 2016. 
      Mr. Amit Kumar, Department of Electronics and Communication, 

CBS Group of Institutions Affiliated to Maharshi Dayanand University, 
Rohtak (Haryana). India. 

Software defined radio has potential opportunity in 

resolving the problem of frequency congestion in future. 

Within a SDR, the radio contains several processing 

elements (GPPs, DSPs, and FPGAs) that can be 

programmed by the waveform to deliver the required 

functionality. However, if each waveform must be tailored 

to the unique capabilities of each individual platform, (e.g., 

the type of GPP, DSP, and FPGA), significant portions of 

the waveform may have to be rewritten if they need to be 

ported to different hardware platforms. As a result, the move 

toward SDRs has prompted the development of open 

standards, to make it easier to develop waveforms that can 

run on multiple platforms with minimal change. 

II. SDR STANDARDISATION 

SDR standards must address three different parts of a 

waveform life cycle: (a) Describe the waveform - A 

waveform description should be entirely hardware 

independent but contain all the necessary information to 

implement the waveform on appropriate hardware. (b) 

Implement the waveform - Waveform implementation 

should be done in a relatively hardware-independent 

environment to facilitate portability to different hardware 

platforms. (c) Control the waveform- Once the waveform is 

operating, its features may be modified at runtime. 

Standardisation of SDR has been progressing for many 

years. The JTRS/SCA standard developed by the US Army 

[3] and STRS standard developed by NASA [4] define 

robust and powerful infrastructures for flexible radios.  

III. SOFTWARE COMMUNICATIONS 

ARCHITECTURE AND JTRS  

The largest single SDR development effort is spearheaded 

by the joint tactical radio system (JTRS) joint program 

executive office (JPEO) [5]. The JTRS program started in 

1997 with the stated goal as development of a standard to 

facilitate reuse of waveform code between different radio 

platforms. The main standard developed by JTRS is the 

software communications architecture (SCA). SCA defines 

how waveform components are defined, created, connected 

together, and the environment in which they operate.[6] The 

standard was developed with a very software-centric view—

an SCA-compliant radio was envisioned as a true SDR 

running on a GPP. The JPEO has further updated the SCA 

specification to SCA Next. 

3.1. SCA Background 

The SCA defines the following components. An operating 

system (RTOS) for the hardware that the radio runs on. The 

OS must be substantially POSIX compliant. A middleware 

layer takes care of connecting different parts of the radio 

together and handles data transfer between them. In the first 

version of SCA (2.2), the middleware layer had to be 

CORBA.  

 

 

 



 

Standardisation in Software Defined Radio 

19 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: A0696024116/2016©BEIESP 

CORBA is an industrial-grade software architecture 

construct that was developed to facilitate communications 

between software written in many different languages and 

executing across multiple computers. The SCA Next 

standard removes the requirement that the middleware be 

CORBA and leaves it up to the radio developer. A set of 

interface definition language (IDL) classes provide an 

abstract interface to different objects that make up a radio 

(e.g., IO ports, components, devices, etc.). These classes, 

together with software code that enables their use, are 

known as the core framework (CF). An XML ontology 

(Domain Profile) describes all the components that make up 

a radio and how these components are to be interconnected 

and executed to implement the desired waveform. APIs are 

used for many frequently used interfaces (e.g., audio, 

Ethernet, etc.).  SCA is also designed to address security 

requirements of military radios and has built-in support for 

red/ black (secure/open) separation. SCA has numerous key 

features that can be organized into four major categories: 

Software architecture, Hardware architecture, Security 

architecture and Application program interfaces (APIs). The 

software architecture is based on an embedded distributed 

computing environment mainly defined by an operating 

environment (OE), applications, and logical devices. The 

OE itself is comprised of a real-time operating system 

(RTOS), a real-time object request broker (ORB), core 

framework (CF) defined by the SCA, and services. The 

RTOS utilizes a POSIX 2 -based processing infrastructure in 

order to enable full JTRS functionality. The interfaces 

defined by the SCA for the ORB are based on a subset of 

CORBA 3 (common object request broker architecture) in 

order to seamlessly integrate and enable the interoperability 

of various software and hardware components from the 

same or various vendors. The hardware platform is divided 

into three main sections: the black section where the data is 

encrypted between the various interfaces, the crypto section 

that encrypts and de-encrypts the data going from the red 

section to the black section and vice versa, and the red 

section where the data flows in de-encrypted format 

between various devices. The security architecture is 

comprised of various security elements of the SCA that are 

relevant to both commercial and military applications. The 

various security requirements can be classify ed into key 

categories of- Encryption and decryption services, 

Information integrity, Authentication and no repudiation, 

Access control, Auditing and alarms, Key and certification 

management, Security policy enforcement and management, 

Configuration management and Memory management. 

 

 

Fig1-Conceptual hierarchy of SCA components 

3.2. CORBA 

Middleware is a layer of software between the 

applications and the underlying network. This layer provides 

services like identification, authentication, naming, trading, 

security and directories. The middleware also aims to 

provide hardware and location transparency to software 

entities. It functions as a conversion and translation layer. It 

is a consolidator and integrator. With the help of 

middleware, software applications running on different 

platforms can communicate transparently. CORBA is used 

as the underlying middleware. CORBA has been chosen as 

the middleware layer of the Software Communications 

Architecture, because of the wide commercial availability of 

CORBA products and its industry acceptance. Distributed 

processing is a fundamental aspect of the JTRS system 

architecture. CORBA is used to provide a cross-platform 

middleware service that simplifies standardized client/server 

operations in this distributed environment by hiding the 

actual communication mechanisms under an Object Request 

Broker software bus . CORBA is the Object Management 

Group’s open architecture that provides the infrastructure 

for computer applications to work together over a network.  

      A large and computationally intensive software 

program runs on many processors. Some of the processors 

are directly connected to each other (perhaps even on the 

same chip), while others are in a different chassis. Routines 

executing on different processors need to communicate with 

each other. CORBA is one implementation of a distributed 

object system [7]. The key to CORBA is an object request 

broker (ORB) that is responsible for data transfer between 

and execution of software objects residing on possibly 

different processors. An object is described using interface 

description language (IDL)—specifying the inputs, outputs, 

and methods. The IDL description is compiled by a tool 

provided by the developer of the ORB to create two 

wrappers: one for the client side, called a stub, and one for 

the server side, called a skeleton. The client and server may 

use different languages and the IDL compiler can generate 

wrappers for each language (e.g., C, C++, Python, JAVA, 

etc.). The ORB itself may be written in any language. The 

ORB executing on each processor may come from a 

different vendor.  

 

 

 



International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-4 Issue-1, February 2016  

20 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: A0696024116/2016©BEIESP 

The ‘object skeleton’ contains auto-generated code to 

support data transfer, setting parameters, and calling of 

methods. CORBA supports powerful features that allow 

software objects to find each other at runtime by querying 

the domain name service. The ORB abstracts the 

communications medium. While most CORBA 

implementations rely on the standard TCP/IP network stack 

for low-level communications, this is not a requirement. 

ORB works just as well over PCI-express, or a custom 

hardware interface. A sophisticated ORB can detect when 

the two objects are executing on the same processor and use 

shared memory for communications. IDL descriptions are 

automatically generated by tools such as OSSIE that allow 

the user to think in terms of IO ports and data types that are 

meaningful to radio designers. CORBA is intended to be 

implemented on GPPs. However, many SDRs include non-

GPP devices such as FPGAs and DSPs. These devices are 

not suitable for executing a full-featured ORB and therefore 

cannot fully participate in the ORB infrastructure. SCA 

addressed non-GPP hardware by defining an adaptor 

component. This component executes on the GPP and 

translates CORBA messages to modem hardware 

abstraction layer (MHAL) messages. The MHAL messages 

are simple packets with the packet format left entirely up to 

the developer. The SCA Next standard specifies two new 

CORBA profiles: (a) Lightweight Profile for SCA 

applications hosted on resource-constrained platforms such 

as DSPs (b) Ultra-Lightweight Profile targeted at 

applications hosted on FPGAs. These profiles support a 

small subset of CORBA functions and data types.  

3.3. Controlling the Waveform in SCA 

 SCA provides two mechanisms to control an executing 

waveform: 1. Low-level interface to each component via the 

configuration properties accessed by the Configure method. 

2. High-level (Domain Manager) interface to load, start, 

stop, and unload a waveform. Each waveform is described 

by a different SAD file. The low-level interface can be used 

to control a few runtime parameters such as the symbol rate 

or modulation. However, it is not suitable for large-scale 

changes that require new components to be loaded and 

swapped for currently executing components. Fast 

waveform changes were not considered during the 

development of the SCA standard. Unloading one waveform 

and loading another is relatively time-consuming, especially 

on a resource-constrained device. Even retrieving the code 

from non-volatile memory can take a long time. The latency 

incurred during this process may be unacceptably high. One 

obvious solution is to develop a super waveform that 

contains the code for all the waveforms of interest. As far as 

the SCA OE is concerned, only one waveform, called 

‘Super-Waveform’, is loaded. The ‘waveform selector’ 

component is configured using the low-level configuration 

interface. Since all the components are simultaneously 

resident, they all consume memory. Note that the code for 

each of the components is only loaded once and can be 

shared among all the waveforms (i.e., if the same 

component is used for phase tracking in all the waveforms, 

it is only loaded once). However, each component does 

allocate its own runtime data.  

3.4. SCA APIs 

SCA compliance is not sufficient for easy waveform 

portability. Consider an application (waveform) that relies 

on a specific and unique audio interface that is only 

available on one hardware platform. Even if the application 

is SCA compliant, it would be quite difficult to port to 

another platform. To address this problem, the OE defines a 

set of standard interfaces to frequently used devices. A layer 

of standardized APIs is placed between the application and 

hardware. The APIs, just like the rest of SCA components, 

are described using IDL. The hardware vendor must provide 

a Radio Device which translates between the JTRS API and 

the low-level, hardware specific API. A set of fundamental, 

abstract APIs define interfaces common to a wide range of 

more specific APIs. The specific APIs are derived from the 

primitive APIs.[8]  

3.5. Comparison of SCA Variants 

SCA 1.0 was the first official version released in 2000. SCA 

2.2 was specified for yhe first radio product released in 

2001. SCA 2.2.1 was an interim version released in 2004. 

SCA 3.0 was an innovative interim version which was 

cancelled shortly afterwards. SCA 2.2.2 is most stable and 

modern version in use since 2006. SCA 4.0 is an improved 

version not yet in use and SCA 4.1 is the most improved 

version with backward compatibility to 2.2.2. SCA 2.2.2 is 

currently the best suited solution for powerful and secure 

SDRs. All major programs like the US JTRS, the German 

SVFuA and the European ESSOR are based on the SCA 

2.2.2. The technical benefits include portable waveform 

applications, modularity enabling reuse of waveform 

components, scalability and ease of integration of new 

features. Issue which is nor being optimally addressed by 

the SCA 2.2.2 is the lack of support for small battery 

powered systems. SCA 4.0 was released in 2012 and was 

the first major release in six years. Major enhancements in 

comparison of 2.2.2 includes support for incorporation of 

additional software and hardware platforms via profiles, 

permits static component connection, supports nested 

waveforms and interconnections and incorporates 

technology advances. But porting an existing SCA 2.2.2 to 

an SCA 4.0 compliant SDR platform would have required 

substantial rework. SCA 4.1 provides crucial edge over SCA 

2.2.2. SCA 4.1 provides substantial advances of SCA 4.0, 

solves the backward compatibility issue and includes further 

improvements like the lightweight profiles.  

IV. STRS 

SDR is very attractive for use in satellites and deep space 

missions. The radios on space platforms have very long life 

cycles. Changing the communications waveform can extend 

the life of a mission, increase the amount of returned data, or 

even save the mission from failure. NASA decided to 

develop a lightweight standard modeled loosely on the JTRS 

standard, and called it ‘Space Telecommunications Radio 

System’ or STRS.[9]  



 

Standardisation in Software Defined Radio 

21 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: A0696024116/2016©BEIESP 

 

Fig 2-Conceptual hierarchy of STRS 

In comparison it clearly demonstrates that STRS is 

significantly simpler than SCA. Perhaps the largest 

difference is that no middleware layer (i.e., CORBA) is used 

for STRS. The bulk of the STRS standard deals with APIs. 

Unlike SCA, the STRS standard also deals with hardware 

implementation of the radio. JTRS developers were mostly 

concerned with application and waveform portability. STRS 

developers also want to be able to swap hardware boards 

between radios or add new ones. STRS explicitly addresses 

the ‘signal processing module (SPM)’ made up of ASICs, 

FPGAs, and DSPs that do not execute software. In fact, the 

GPP is meant for control only and is not expected to do any 

signal processing at all. The set of APIs defined by STRS is 

much smaller than for JTRS. Most of the required APIs deal 

with the infrastructure and would be considered a part of the 

Application Factory in JTRS.  

V. RESULTS 

A fundamental challenge of SDR is to provide an ideal 

platform to application separation, such that waveform 

applications can be moved from one SDR platform to be 

rebuilt on another on without having to change or rewrite 

the application. SCA contributes to such application 

portability by providing a standard for deployment and 

management of SCA based applications. It also standardizes 

the interconnection and intercommunication both between 

the components of the application, and between components 

and system devices. Significant pieces that are not 

standardized by the SCA itself are the APIs to the services 

and devices of the system platform. In order for portability 

to extend across domains, the APIs to the services and 

devices will need to be standardized across domains as well. 

Comparisons of various versions of SCA reveal interesting 

future prospects for SCA 4.1 with backward compatibility. 

VI. CONCLUSION 

This paper has presented the aspects of standardisation in 

software defined radio. The software communication 

architecture has contributed in reducing the complexity of 

the technology by bringing the waveforms on a common 

platform and in a structure conducive to interaction. Further 

efforts in developing the architecture would significantly 

contribute towards reducing the multiple platforms of 

communication. 

REFERENCES 

1. J. Mitola III, “Cognitive radio: An integrated agent architecture for 

software defined radio.” PhD thesis, Royal Institute of Technology 

(KTH), Stockholm, Sweden, May 2000. 

2. www.wirelessinnovation.org 
3. JPEO JTRS (2011) SCA: application program interfaces (APIs)  

(http://sca.jpeojtrs.mil/api.asp) 

4. Reinhart RC et al (2007) Open architecture standard for NASA’s 
software-defined space telecommunications radio systems (Proc IEEE 

95:1986–1993) 

5. JPEO JTRS http://sca.jpeojtrs.mil/home.asp 
6. Bard J (2007) Software defined radio: the software communications 

architecture. Wiley, New York 

7. Ciaran McHale, CORBA explained simply 
http://www.ciaranmchale.com/corba-explainedsimply 

8. Eugene Grayver,” Implementing Software Defined Radio” 

9. Reinhart RC et al (2010) Space telecommunications radio system 
(STRS) architecture standard. NASA glenn research center, 

Clevelend, TM 2010-216809 

 

 


