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Abstract- Image processing in hexagonal grid is very much 

advantageous than in the conventional rectangular grid. The 

advantages include higher angular resolution, consistent 

connectivity and higher sampling efficiency. A wide class of 

operations on images can be performed directly in the wavelet 

domain by operating on its coefficients of the images. Operating 

in wavelet domain enables to operate on different resolutions, 

manipulate features at different scales and localize the operation 

in both spatial and frequency domains. A new method of 

designing hexagonal wavelets using lifting scheme in the spiral 

addressing scheme is proposed in this thesis. It is computationally 

efficient because they are not based on Fourier transforms, and 

could be performed in place. 

Index Terms:- wavelets,lifting scheme,spiral addressing, 

hexagonal grid 

I. INTRODUCTION 

Image processing uses a rectangular grid for image 

representation and processing. Hexagonal grid is an 

alternative pixel tessellation scheme besides the 

conventional square grid for sampling and representing 

images. Using hexagonal grids to represent digital images 

have been studied for more than 40 years. Increased 

processing capabilities of graphic devices and recent 

improvements in CCD technology have made hexagonal 

sampling attractive for practical applications. Continuous 

studies in this field brought new interests to this topic. A 

hexagonal coordinate system is simply a system which 

replaces the common square lattice and describes the images 

in favor of a hexagonal lattice. From the perspective of 

computer vision, hexagonal coordinate system closely 

resembles the layout of photo-receptors in the human retina. 

Research suggests that the simulation of at least some of the 

capabilities possessed by human eye and the visual 

processing areas of the brain can be easily executed on the 

images that are laid out on a hexagonal lattice. Sampling on 

a hexagonal lattice is a promising solution which has been 

proved to have better efficiency and less aliasing [1]. Its 

computational power for intelligent vision pushes forward 

the image processing field. Many reports describing the 

advantages of using such a grid type are found in the 

literature. The major advantages are higher degree of 

circular symmetry, uniform connectivity, greater angular 

resolution, lesser storage and reduction in computation for 

image processing operations. Mersereau [2] has shown that 

for circularly band limited signals, 13.4% fewer sampling 

points are required with the hexagonal grid to maintain the 

equal information with the rectangular grid.  
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Many resampling techniques were proposed like brick wall, 

quincunx sampling, least squares approximation of splines, 

etc [3]. Using wavelets an image can be decomposed into a 

multiresolution hierarchy of localized information at 

different spatial frequencies. Operating in the wavelet 

domain enables one to perform various operations 

progressively in a coarse-to-fine fashion, operate on 

different resolutions, manipulate features at different scales, 

trade off accuracy for speed, and localize the operation in 

both the spatial and the frequency domains. Lifting scheme 

[5],[6],[7] is a simple and efficient technique for the creation 

of wavelets. It is computationally efficient because they are 

not based on Fourier transforms and could be calculated in-

place. In this work, the first part deals with basics of 

hexagonal image processing followed by the spiral 

addressing scheme. Then it covers the construction of 

wavelets using lifting scheme. We propose one new method 

of designing hexagonal wavelets using lifting scheme in the 

spiral addressing scheme. 

II. HEXAGONAL SAMPLING SCHEME 

A digital image a [m, n] described in a 2-D discrete space is 

derived from an analog image a (x, y) in a 2D continuous 

space through a sampling process that is frequently referred 

to as digitization. The 2D continuous image a (x, y) is 

divided into N rows and M columns. The intersection of a 

row and a column is termed a pixel. The value assigned to 

the integer coordinates [m, n] with { m=0,1,2,…,M–1 } and         

{ n=0,1,2,…,N–1} is a [m, n]. Following are the various 

tessellation schemes used for the digitization of the image. 

2.1 Three possible regular tessellation schemes 

There exist only three possible regular tessellation schemes 

to tile a plane without overlapping among the samples and 

gaps between them, namely the tessellation with hexagons, 

with squares, and with regular triangles (Fig.1). Any other 

types of spatial tessellation will result in either unequal 

distance between neighboring pixels, or introduce gaps or 

overlaps among samples. 

 
Fig. 1 Three schemes of regular tessellation 
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2.2 Efficient Sampling Scheme 

An insufficient sampling rate can always introduce 

unwanted effects in the reconstructed signal, referred as 

aliasing. Middleton [8] investigated sampling and 

reconstructing wave number limited multi-dimensional 

functions of signals. They concluded that the rectangular 

lattice is not the most efficient sampling lattice which uses 

minimum number of sampling points to achieve exact 

reconstruction.A similar conclusion was obtained by 

Mersereau [2] and Vitulli [5], who showed that for signals 

which are band-limited over a circular region in Fourier 

space, 13.4% fewer sampling points are required with the 

hexagonal grid to maintain equal high frequency image 

information with the rectangular grid, thus less storage and 

less  computation time are required. An example is that in 

image coding application, one may expect that the coding 

efficiency can be increased by using the hexagonal sampling 

scheme. On the hexagonal grid, digitization displays a better 

connectivity and is perceived as being approximated by 

small poly lines, whereas on the square grid, digitization is 

still perceived as being approximated by pixels. Such a 

perception of single pixels disturbs the impression of 

continuity of the discretized line. This is due to the fact that 

in the square grid neighbors of a pixel are not placed all at 

the same distance. Moreover, two diagonal neighbors in the 

square grid have only one point in common, whereas two 

horizontal or vertical neighbors of the square grid, and all 

the neighbors of a pixel in the hexagonal grid, have one 

segment in common with their neighbor. 

III. SPIRAL ADDRESSING SYSTEM 

Middleton and Sivaswamy [8] proposed a one-dimensional 

addressing system, as well as two operations based on this 

addressing system, for hexagonal structure. This system is 

called as Spiral Architecture (Fig.2). Spiral Architecture 

(SA) is inspired from anatomical consideration of the 

primate's vision system. 

 

Fig. 2 Spiral addressing 

The address in the spiral architecture grows from the centre 

of image in powers of seven along a spiral like curve. This 

addressing scheme combined with two mathematical 

operations, spiral addition and spiral multiplication is the 

base of Spiral Architecture. The spiral addition and spiral 

multiplication correspond to image translation and image 

rotation respectively. Middleton and Sivaswamy [8] also 

proposed a single-index system for pixel addressing by 

modifying the Generalized Balanced Ternary system, as 

shown in Fig.3. 

 
(a)                                                (b) 

Fig. 3 (a) Hexagonal image structure with indices (b) 

Balanced ternary addition 

Neighborhood operations are often used in image 

processing. Finding the neighbor in a hexagonal image 

makes use of the spiral addition operation [8]. In a seven-

pixel cluster, the neighborhood relation can be determined 

by spiral addition as follows. 

 
(a) Neighborhood relationship (b) An example of 

neighborhood 

Fig. 4 Neighborhood relationship with spiral 

architecture 

Let the spiral address of the central pixel, as shown in Fig. 

4(a), be denoted by a, Then the spiral address of its neighbor 

pixel can be described by spiral addition denoted by +, with 

a certain number of displacements, as shown in Fig. 4 (a). 

An example is given in Fig. 4(b). For the whole image, the 

spiral rotation direction is as shown in Fig. 5, one can find 

out the spiral address of any hexagonal pixel with centre on 

a certain hexagonal pixel whose spiral address is known. 

 
Fig. 5 Spiral rotation direction 
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The Spiral Architecture has some distinguishing features 

compared to the square image processing. The one 

dimensional addressing scheme leads to an efficient storage 

and the placement of the origin at the centre of the image 

simplifies geometric transformations of a given image. 

Hexagonally sampled image allows non-traditional 

neighborhoods with consistent boundary connectivity, 

which is useful for many computer vision applications. 

IV. WAVELETS 

Wavelets were developed independently in the fields of 

mathematics, quantum physics, electrical engineering and 

seismic geology. Interchanges between these fields during 

the last ten years have led to many new wavelet applications 

such as image compression, human vision, radar, earth 

quake prediction and various other image processing 

operations. The transform is computed at various locations 

of the signal and for various scales of the wavelet. If the 

process is done in a smooth and continuous fashion (i.e., if 

scale and position is varied very smoothly) then the 

transform is called Continuous Wavelet Transform (CWT). 

If the scale and position are changed in discrete steps, the 

transform is called Discrete Wavelet Transform (DWT).  

Mathematically, a wavelet can be denoted as  

     

       

                                                                  (1)

    b – Location parameter 

    a – scaling parameter 

For the function to be a wavelet, it should be time limited. 

For a given scaling parameter ‘a’, we translate the wavelet 

by varying the parameter ‘b’. Design of wavelets is done in 

two methods. One is the filter bank method which uses the 

filters, analysis and synthesis filter banks and the other is the 

lifting scheme method. Here we consider the lifting method 

and how it is used to construct wavelets in spiral addressing 

scheme. The lifting scheme [5] is a method for constructing 

wavelets in the spatial domain. It consists of three steps: 

1) Splitting the data into two subsets,  

2) Computing the wavelet coefficients as the failure to 

predict one subset based on the other (high pass),  

3) Computing the scaling function coefficients by updating 

the remaining subset (low pass). 

Any discrete wavelet transform can be factored into lifting 

steps [9], thus allowing in-place computation of the wavelet 

transforms, faster computation, asymptotically reducing the 

complexity by a factor of four and construction of wavelet 

transforms that map integers to integers [10]. 

V. CONSTRUCTION OF WAVELETS USING 

LIFTING METHOD 

We present the construction of wavelets on a hexagonal 

lattice based on the method of lifting which is an efficient 

way to compute wavelets[11]. In contrast to Laine [12] the 

hexagonal wavelet thus derived does not use a Fourier 

transform method.  Lifting scheme here explained is based 

on the spiral addressing scheme which is implemented on 

the HIP framework explained in [8]. Construction of the 

wavelet is performed in three phases: splitting, predicting, 

and updating. Splitting partitions the data into two subsets A 

and B. Predicting computes wavelet coefficients at A using 

the points in B. Updating changes the points in B in order to 

preserve the mean value. All, these operations are computed 

in-place and reversing them can produce the inverse 

transform. A complete wavelet transform of a hexagonal 

image requires repeated application of the splitting, 

predicting, and updating steps. These are now described via 

the first case for a two layer HIP image
)(xh

, Gx 2 and 

a general case. 

5.1 First case 

Initially, the lifting scheme partitions the data into even and 

odd pairs corresponding to up sampling and down sampling 

the data by a factor of 2. Specifically for an image on a 

square lattice this corresponds to a partitioning scheme 

based upon the 4-neighbours of a point. However, due to the 

topology of the hexagonal lattice this is not really plausible. 

In fact the 3 symmetric axes make it impossible to provide 

such a partitioning using any of the 6-neighbours of a 

hexagonal point. Thus, the method illustrated in Fig. 6(a) is 

performed.  

 

Fig. 6  Partitioning of the hexagonal image using lifting 
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The green points ({0, 15… 66}), collectively denoted as A0, are analogous to up sampling, while the red points ({1, 2….. 

65}), denoted as B0, are analogous to down sampling. Using the following set operation : 

}64,53,42,31,26,15,{)(  xxxxxxxxS                                       (2) 

Here ‘+’, is the addition operation defined in the context of the HIP framework. The set of points in  A0 can thus be defined 

recursively as follows: 

)64()15()0()0( 1110  nnnn SSSSA                        (3) 

 

B0 can be defined simply as G
0
 − A0. The next step in lifting 

is to predict the values at addresses given in A0  using the 

nearest neighbors in B0. This can be performed using a  

linear interpolation. Thus for a given member in A0  labeled 

ai the prediction step is :   





B
a

ii

Ng

ghahah )(
6

1
)()(                                               

               (4) 

Here, g are the nearest neighbors in B0   to point ai ε A0.  In 

this case it corresponds to 

}6,,1{  ii aaN B

a       

 The values for h (ai) are  omputed in-place. Once 

this has been computed the values in B0 can be updated to 

preserve the image mean, via 





A
b

ii

Ng

ghbhbh )(
9

1
)()(

                                     

              (5) 

Here, g is the nearest neighbors in A0   to point bi ε B0.  In 

this case it corresponds to {bi+1, bi+3, bi+5} or {bi+2, bi+4, 

bi+6} depending on the value of bi. 

In the normal lifting scheme the steps just described would 

be reapplied repeatedly to the remaining low frequency parts 

of the image (Bi). However, examination of Fig.6(a) shows 

that the remaining points do not have the same topology as 

the original. In fact, it looks like a group of hexagonal rings. 

For this reason we have to reexamine the splitting, 

predicting, and updating steps. As each hexagonal ring 

consists of 6 points it is possible to just split the space in 

half but again due to topological constraints it is not possible 

to choose odd and even points. The specific partition is 

illustrated in          Fig. 6(b). The cyan points (1, 3,… 60), 

denoted by C0 are the high frequency points and the 

magenta points (2, 4,…,65), denoted by D0 are the low 

frequency points. As the spacing between points in C0 is 

equivalent to that in A0 the points can be recursively 

defined: 

)63()16()1()1( 1110  nnnn SSSSC                                     (6) 

We can notice the change of origin. The set of addresses 

corresponding to the low frequency image data is defined as 

D0 = B0 − C0. The predicted values of ci can be computed as 

a linear interpolation, thus: 





D
c

ii

Ng

ghchch )(
3

1
)()(

                      (7) 

Here, g are the nearest neighbors in D0   to point ci ε C0.  In 

this case it is { ci+1, ci+3, ci+5}. Similarly we can compute 

the updating step as follows: 





C
d

ii

Ng

ghdhdh )(
6

1
)()(

                                            

                       (8) 

Here, g are the nearest neighbors in C0   to point di ε D0.  In 

this case it is {di+2, di+4, di+6}. 

Notice the similarity between the two sets 
D

c
N   and 

C

d
N  

and the one employed in the update step for B0. This implies 

that the update step for B0 thus requires just prior knowledge 

of the neighbors for C0 and D0 to compute. 

5.2   General case 

At the end of the first iteration of the lifting procedure we 

have computed the high frequency values corresponding to 

A0 and C0 are left with set D0 from which to continue the 

process. There are many possibilities but the only 

requirement is that it should be simple to apply. 

Examinations of Fig. 6(c), which are the points in D0, show 

two features. Firstly, the original origin is no longer in the 

data set so a shift is required. Secondly, the radius of the 

hexagonal ring has expanded by √3 and rotated by 300. 

Fortunately, due to the vector nature of HIP addresses the 

shift can just be accommodated by an addition of the 

address to the origin and the rotation and scaling can be 

accommodated by a 

multiplication. 
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 There are many valid possibilities that can be used but for 

the work presented here an offset of 2 and a scaling of 15 

were chosen. 

Using these ideas the general case can be derived. This is 

achieved by rewriting the cases for the first case and 

introducing an origin shift, ‘o’, and a transformation, ‘r’, 

defined as: 

215   ,0 10  nn ooo  





n

i

nr
0

15
                                                          (9) 

Using these, steps previously outlined can be redefined. By 

redefining the partitioning operation to be  

}64,,15,{)( mm ryryyyS m      (10) 

where moxy  . 

The first splitting is: 

)( m

m

nm oSA   

elseAD

mAGB

mm

mm

  ,         

0  ,  

1 







                                       (11) 

The second splitting is :  

mmm

m

m

nm

CBD

oSC



 )1(
                                               (12) 

The neighborhoods are also changed to include these factors 

as follows: 

}6,,1{ mimi

B

a raraN    

mimimimi

mimimimi

A

b

Cbrbrbrb

DbrbrbrbN





  },6,4,2{          

  },5,3,1{
 

}5,3,1{ mimimi

D

c rbrbrbN   

}6,4,2{ mimimi

C

d rbrbrbN 
                   (13) 

Equations given in the prediction and updating section can 

now be applied directly to compute the wavelet. The inverse 

wavelet uses the same sets of addresses though the signs are 

swapped in the prediction and updating steps. 

VI. IMPLEMENTATION 

In this approach we use the Hexagonal Image Processing 

(HIP) framework which is implemented in Python language. 

Using this, image can be resampled into hexagonal using the 

spiral addressing scheme. Construction of wavelets using 

the lifting scheme is done in this framework. In this 

framework number of layers required to represent an image 

with M x N size is approximately   
7 log

)log()log( NM 
. 

 

 

       (a) original image                      (b) 2-layer                  (c) 3-layer              (d) 4-layer                     (e) 5-layer 

Fig 7 Hexagonal sampling of flower. jpg image in HIP framework 

Original size of the image is 128 x 128. So the number of 

layers required to display this image fully in HIP framework  

is given by  

5  987.4
845.0

214.4

log7

128 log 128 log



 . 

VII. CONCLUSION  

The possibility of constructing wavelets on spiral addressing  

scheme using lifting method was studied extensively. Since 

there is no dedicated hardware available for hexagonal-

based image capture and display, conversion has to be done 

from square to hexagonal image before hexagonal-based 

image processing. The difference will be clear only if we 

have hexagonal based image capture and display systems.  
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The use of these wavelets can be extended to many pattern 

recognition operations like object recognition and 

segmentation. The properties of the hexagonal wavelets are 

to be studied extensively in order to apply it to 

multiresolution image processing operations. 

REFERENCES 

1. Golay, M., “Hexagonal parallel pattern transformation”. IEEE 

Transactions on computers, 18(8),pp. 733-740, September,1969. 

2. Mersereau, R.M., “The processing of Hexagonally Sampled Two-
Dimensional  Signals”. Proceedings of the IEEE, 67, pp. 930-

949,1979. 

3. Frédéric Chazal, David Cohen-Steiner, André Lieutier, “A sampling 
theory for compact sets in Euclidean space”. Proceedings of the 

twenty-second annual symposium on Computational geometry SCG 

'06, ACM. 
4. Vitulli, R.,  “Aliasing effects mitigation by optimized sampling grids 

and impact on image acquisition chains”. Geosciences and Remote 

Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International, pp. 

979-981 vol.2,2002. 

5. W. Sweldens, “The Lifting Scheme: A Construction of Second 

Generation  Wavelets,” SIAM J. Math. Analysis, vol. 29, no. 2, pp. 
511-546, 1997. 

6. I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into 

Lifting Steps,” J. Fourier Analysis Applications, vol. 4, no. 3, pp. 245-
267, 1998. 

7. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet 

Transforms that Map Integers to Integers,” Applied and Computational 
Harmonic Analysis, vol. 5, no. 3, pp. 332-369, 1998. 

8. Lee Middleton and Jayanthi Sivaswamy, “Hexagonal Image Processing 

– A Practical Approach”, Springer-Verlag London Limited, 2005. 
9. I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into 

Lifting Steps,” J. Fourier Analysis Applications, vol. 4, no. 3, pp. 245-
267, 1998. 

10. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet 

Transforms that Map Integers to Integers,” Applied and Computational 

Harmonic Analysis, vol. 5, no. 3, pp. 332-369, 1998. 

11. N. P. Hartman and S. L. Tanimoto, “A Hexagonal Pyramid data 

structure for Image Processing”, IEEE Transactions on Systems, Man, 
and Cybernetics, SMC- 14(2):247–256, Mar/Apr 1984. 

12. A.F.Laine,S.Schuler, W.Huda, and J.C. Honeyman, ”Hexagonal 

wavelet processing of digital mammography”, Proceedings of SPIE, 
vol.1898, pp.559-573,1993. 

 

 

 


