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Abstract---   Camera global motion estimation is critical to the 

success of video stabilization. An extension of Video stabilization 

using principal component analysis (PCA) and scale invariant 

feature transform (SIFT) in particle filter framework is proposed. 

In the proposed method the feature points are collected from 

based on Speeded Up Robust Features (SURF). Random Samples 

Consensus (RANSAC) is used to remove local motion vectors and 

incorrect correspondences. A particle filter is used to estimate the 

weight of feature points, solving the issue of Different Depth of 

Field (DDOF) for feature points weighted least square (WLS) 

algorithm is applied in the global motion estimation. Finally, a 

Kalman filter estimates the intentional motion, and the 

unintentional motion is compensated to obtain stable video 

sequences. The algorithm has the characteristics of high 

precision and good robustness. 

 

Keywords--- particle filter, principal component analysis 

(PCA), scale invariant feature transform (SIFT), speeded up 

robust features (SURF). 

I. INTRODUCTION 

     With handheld cameras, camera motion and platform 

vibrations are difficult to be avoided, which generates 

unstable video sequences. Therefore, video stabilization 

becomes an indispensable technique in advanced digital 

cameras and camcorders. The main contribution of this 

paper is to develop a novel motion estimation approach 

based on particle filtering for video stabilization. The key 

insight of this approach is that, feature points should have 

different contributions to the estimation results, and good 

estimation should depend on feature points with similar 

DOF. In the proposed approach, feature points are weighted, 

and a WLS algorithm is used to obtain estimation results. 

II. BACKGROUND 

     Video stabilization techniques have been studied for a 

long time and attracted even great interests in recent years. 

An automatic image-stabilizing system for camcorders, 

utilizing only digital signal processing was developed [1]. 

Then a compact electronic image stabilizer on the basis of 

scanning area selection of the imager and motion vector 

detection was realized [2].  

This system is suitable for compact video cameras. 

However, the stabilization rate becomes poor at high 

frequency. A DIS for video cameras is proposed [3].  It is 

composed by an edge detection unit, a motion detection unit 

and a digital zooming unit. The proposed DIS system is 

designed mainly for hardware minimization in a video 

camera system.  
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Then extraction and tracking of corner features in order to 

estimate global motion is done [4]. However, the features 

are not robust with respect to some image transformations, 

such as scaling and rotation. To overcome the inefficiency 

in scaling and rotation, SIFT features [5] and PCA-SIFT [6] 

are being widely used for global motion estimation. 

Recently a DIS algorithm based on feature point tracking is 

presented [7]. The Kanade-Lucas-Tomasi (KLT) tracker to 

estimate the global motion between two consecutive image 

frames is used. The motion prediction by the Kalman filter 

(KF) is incorporated into the KLT tracker to further speed 

up the tracking process. A novel digital-image stabilization 

scheme based on independent component analysis (ICA) is 

proposed [8]. The method utilizes ICA and information 

obtained from the image sequence to deconvolve the 

egomotion from the unwanted motion of the sequence. A 

method to stabilize video for vehicular applications based on 

feature analysis is proposed [9]. SURF [10] features 

descriptor is used. For feature matching, KD tree with best-

bin-first search significantly reduces the matching time. A 

damping filer is utilized, predicting the unwanted 

oscillation. 

III. PREVIOUS WORK 

     Yao Shen and Parthasarathy Guturu had observed the 

dimensionality of the feature space is first reduced by the 

principal component analysis (PCA) method using the 

features obtained from a scale invariant feature transform 

(SIFT), and hence the resultant features may be termed as 

the PCA-SIFT features. The trajectory of these features 

extracted from video frames is used to estimate undesirable 

motion between frames. A new cost function called SIFT-

BMSE (SIFT Block Mean Square Error) is proposed in 

adaptive particle filter framework to disregard the 

foreground object pixels and reduce the computational cost. 

Frame compensation based on these estimates yields 

stabilized full-frame video sequences. Experimental results 

show that the algorithm is both accurate and efficient. 

     The stabilization approaches available in the technique 

may be classified mainly into two categories: (1) Hardware 

based methods and (2) Image processing software based 

methods. Hardware based methods physically avoid camera 

jerks by adjusting camera motion sensors once unwanted 

motion is detected. Though this approach performs well in 

real life applications, the video systems adopting this 

approach turn out to be very expensive because of the need 

for sophisticated sensors that measure camera jerks 

accurately. On the other hand, image processing software 

based methods, usually known as digital image stabilization 

methods, are much less expensive. The proposed method 

uses particle filter (PF) approach for an accurate estimation 

of undesired motion of the camera. 
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Figure 1: Processing steps of existing technique 

 

     Figure1 shows the steps involved in the technique are 

feature extraction and matching, initial motion estimation 

using RANSAC, theoretical foundations of particle filter, 

construction of motion model, SIFT-BMSE cost function, 

adaptive model noise, particle number and frame 

reconstruction. 

    Traditionally, the geometric transformation between two 

images can be described by a homograph which is a 3D 

model with eight unknown parameters. However, due to the 

complexity of homograph, a 2D affine transformation 

having only four unknown parameters is adopted. Suppose 

𝑃1 = (𝑥, 𝑦, 1)𝑇  and 𝑃2 = (𝑥 ′, 𝑦′, 1)𝑇  to be the pixel location 

of corresponding points in consecutive video frames, the 

relationship between these two locations can be expressed 

by following transform. 

 
𝑥 ′

𝑦′

1

 =   
𝐶𝑜  cos 𝜃𝑜 −𝐶𝑜  sin 𝜃𝑜 𝑇𝑥𝑜

𝐶𝑜  sin 𝜃𝑜 𝐶𝑜  cos 𝜃𝑜 𝑇𝑦𝑜

0 0 1

  
𝑥
𝑦
1
  

Here, 𝑇𝑥𝑜  and 𝑇𝑦𝑜  denote translation along x and y axis 

respectively. 𝐶𝑜  and 𝜃𝑜  are scaling and rotation parameters 

in the image plane. 

Although the number of mismatches can be reduced by 

using PCA-SIFT compared with SIFT, small amount of 

mismatches still occur, and this may lead to unreliable 

prediction of motion estimation. Thus, a further check of 

matching errors is a significant part of the algorithm. 

RANSAC algorithm is used for both elimination of the 

outliers in the previous matching and estimation of the four 

unknown parameters of the above affine transform model. In 

each iteration of the RANSAC algorithm, minimal sample 

sets (MSSs) are randomly selected from the input dataset 

and the affine model parameters are computed using only 

the elements of this MSS, then RANSAC checks the entire 

dataset and decides the inliers or outliers depending upon 

whether an element of input data set fits the model or not. 

After K iterations, the result that has minimal outliers is 

used as the initial value of the parameters of affine 

transform model. 

     The state vector of 𝑆𝑡  can be represented as 𝑆𝑡 =

  𝑇𝑥 , 𝑇𝑦 , 𝜃, 𝐶 
𝑇
 where these four elements represent 

translation along x, y axis, rotation and scaling parameters in 

affine transform model. The global motion which can be 

considered as a cumulative motion of previous frame 

neighbors must be estimated. The state transition equation in 

our PF model is given by: 

𝑆𝑡+1 = 𝐴𝑆𝑡 + 𝑈𝑡 ≡  

𝑇𝑥
𝑇𝑦
𝜃
𝐶

 

𝑡+1

 

 

=  

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 0

  

𝑇𝑥
𝑇𝑦
𝜃
𝐶

 

𝑡

+

 
 
 
 
𝑁(𝑇𝑥𝑜

, 𝜎𝑥)

𝑁(𝑇𝑦𝑜
, 𝜎𝑦)

𝑁(𝜃𝑜 , 𝜎𝜃)

𝑁(𝐶𝑜 , 𝜎𝑐)  
 
 
 

 (1) 

     Here 𝐴 is the transition matrix and 𝑈𝑡  is the process noise 

following the Gaussian distribution with the variances 

 𝜎𝑥 , 𝜎𝑦 , 𝜎𝜃 , 𝜎𝐶  and the means  𝑇𝑥𝑜
, 𝑇𝑦𝑜

, 𝜃𝑜 , 𝐶𝑜 . The 

components of the mean vector are determined using the 

RANSAC procedure described. Unlike other parameters, the 

cumulative result of scaling parameter is a product rather 

than a summation of the previous values. Hence, in the 

above transformation, the scaling parameter based on the 

initial value 𝐶𝑜  is computed in the above transformation as 

computed by RANSAC method without considering the 

prior state. Another reason for this kind of computation 

model is that scale changes tend to be small, thus, direct 

estimation without sacrificing accuracy is possible. The 

RANSAC approach provides rough estimates of the motion 

parameters to the PF algorithm, and thereby saves the 

unnecessary computational cost involved in the generation 

of useless particle samples. 

     After each frame is compensated by using the above 

discussed motion estimates, the pixels near the frame 

boundary may be undefined, and this leads to unacceptable 

visual effects. Traditionally, many researchers either trim 

the undefined region or fill in the region with a constant 

value. This results in information loss and quality 

degradation especially in the case of frames that undergo 

large scale translations and rotations because of a jerky 

camera. To avoid this problem after compensation, 

information of neighbouring frames can be borrowed to fill 

the undefined regions though sometimes undefined pixels 

may still exist. Intuitively, if we increase the number of 

neighbouring frames, the number of pixels in undefined 

region will be reduced, but it is computationally intensive. 

In this technique mosaic method to reconstruct undefined 

regions using previous stabilized full-frames is applied, 

since the undefined region of these frames is already 

determined. However, this may occasionally result in a 

carry-forward information (information from previous 

frames) across a considerable number of frames. 

 
(a) 

  
(b)   (c) 

Figure 2: Input frames extracted (a) Original sample, 
(b) Frame #1 (c) Frame #2 
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     Figure 2 shows the frames extracted from the input video 

sequence. Here in this example, 2 frames are extracted from 

the unstabilized video sequence. 

 

 
(a) 

 

  
(b)   (c) 

 

Figure 3: Output compensated frames (a) Original sample, 

(b) Frame #1 (c) Frame #2 

     Figure 3 shows the frames of output video sequence. As 

in figure 1, 2 compensated frames are shown. 

IV. PROPOSED METHOD 

     The stabilization method consists of following steps: 

feature point extraction, RANSAC (Random Samples 

Consensus) based local motion estimation, particle filtering 

based global motion estimation, Kalman filtering based 

intentional motion estimation and image compensation. 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flow steps of proposed algorithm 

 

     The figure 4 shows the steps of the proposed technique 

the selection of features for motion estimation is very 

important, since unstable features may produce unreliable 

estimations with variations in rotation, scaling or 

illumination. SURF (Speeded Up Robust Features) is a 

robust image interest point detector SURF descriptor is 

similar to the gradient information extracted by SIFT (Scale 

Invariant Feature Transform) and its variants, describing the 

distribution of the intensity content within the interest point 

neighbourhood. SURF has similar performance to SIFT, 

however, faster. The increase in speed is due to the use of 

integral images, which drastically reduces the number of 

operations for simple box convolutions that is independent 

of the chosen scale. 

     The RANSAC (Random Samples Consensus) algorithm 

is used to eliminate the outlier feather points. In each 

iteration of the RANSAC algorithm, minimal sample sets 

are randomly selected from feature points. Then, RANSAC 

decides the inliers or outliers depending upon whether an 

element of input data set fits the model or not. After K 

iterations, the result that has minimal outliers is used as the 

initial value of the parameters in the affine transform model. 

     The global motion contains the intentional and 

unintentional motion. As we only want to compensate the 

transformation caused by unintentional camera movements, 

transformations due to intentional motion should be 

identified. The KF (Kalman Filter) is applied to estimate the 

intentional motion of the camera. KF uses measurements 

that observed over time, containing noise (random 

variations) and other inaccuracies, and produces values that 

tend to be closer to the true values of the measurements and 

their associated calculated values. 

     Generally the geometric transformation between two 

images can be described by a 2D or 3D homograph model. 

Due to similarities in 2D and 3D models, in this paper we 

adopted a rigid 2D model for convenience. It was expressed 

as: 

 
𝑥𝑡

𝑦𝑡

1
 =  𝑆𝑡  

cos 𝜃𝑡 −𝑠𝑖𝑛𝜃𝑡 𝑇𝑡
𝑥

sin 𝜃𝑡 cos 𝜃𝑡 𝑇𝑡
𝑦

0 0 1

  
𝑥𝑡−1

𝑦𝑡−1

1
  (2) 

or in the form of Y=AX, where (𝑥𝑡 , 𝑦𝑡 ) is the coordinate at 

time t, 𝜃𝑡  is the rotation, 𝑇𝑡
𝑥  and  𝑇𝑡

𝑦
 are the translations in 

the horizontal and vertical direction respectively and 𝑆𝑡  is 

the scaling factor. Nevertheless, more matches can be added 

under least-square criteria to ensure results more robust: 

𝐴 =   𝑋𝑇 𝑋 −1 𝑋𝑇𝑌 (3) 

     The framework of particle filtering can be expressed as 

follows. Supposing a nonlinear discrete dynamic system: 

𝑆𝑡 =  𝑓𝑡 𝑆𝑡−1 + 𝑄𝑡  (4) 

𝑌𝑡 =  𝑕𝑡 𝑆𝑡 + 𝑅𝑡   (5) 

     Where 𝑌𝑡 , 𝑆𝑡 , 𝑄𝑛
′  and 𝑅𝑡  are the observation, the system 

state, the process noise, and the measurement noise, 

respectively 𝑓𝑡  and 𝑕𝑡  are the system state transition 

function and the observation function, and t is the index of 

time step. 

     Assuming the first order Markov model p(𝑥𝑘⃓𝑥0:𝑘−1) = 

p(𝑥𝑘⃓𝑥𝑘−1) for state transition and conditional dependence 

of 𝑌𝑡  exclusively on 𝑆𝑡 , it can be considered as a recursive 

Bayesian estimation problem to obtain the posterior 

probability p(𝑆𝑡⃓𝑌1:𝑡−1) by: 

𝑝(𝑆𝑡⃓𝑌1:𝑡)  =
𝑝(𝑌𝑡⃓𝑆𝑡 )𝑝(𝑆𝑡⃓𝑌1:𝑡−1)

𝑝(𝑌𝑡⃓𝑌1:𝑡−1)
 (6) 

     Where 𝑝(𝑌𝑡⃓𝑆𝑡) is the likelihood, 𝑝(𝑆𝑡⃓𝑌1:𝑡−1) is the 

system prior, and 𝑝(𝑌𝑡⃓𝑌1:𝑡−1) is the evidence. Particle filter 

estimates 𝑝(𝑆𝑡⃓𝑌1:𝑡−1) by using a set of 

𝑝𝑡 =   𝑆𝑡
𝑖 ; 𝑤𝑡

𝑖 
𝑖=1…..𝑁
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proposal distribution 𝜋 𝑆𝑡 , which is an approximation of 

𝑝(𝑆𝑡⃓𝑌1:𝑡−1). 

     In this proposed method, a particle is composed by a 

small group of feature points selected randomly. As we use 

the particle to determine a warped frame using (2), the 

number of feature points should be no less than 3. Note that 

a feature point may belong to more than one particle. We 

generate N particles and the weight of a particle is 

determined by the point-wise MSE criterion: 

 

𝑤𝑡
𝑖 =  

exp  −
 𝐼𝑡−1−𝐼𝑡

𝑖  
2

2𝜎𝑡
 

 𝑒𝑥𝑝  −
 𝐼𝑡−1−𝐼𝑡

𝑖  
2

2𝜎𝑡
 𝑁

𝑖=1

  (7) 

 

     Where 𝑤𝑡
𝑖  is the weight of the 𝑖𝑡𝑕  particle at time t, 𝐼𝑡−1 is 

the image at time t-1 and  𝜎𝑡  is the variance. 𝐼𝑡
𝑖  is the 𝑖𝑡𝑕  

warped image of 𝐼𝑡  computed based on the 𝑖𝑡𝑕  particle. As 

warped images have undefined regions, computed only in 

the center region of the reference frame with size 
𝑤

2
∗

𝑕

2
 (w 

and h are the width and height of the reference frame). 

     The weight of a feature point is determined by the weight 

of particles which it belongs to: 

𝑤𝑡
𝑗

 =  
1

𝑁𝑡
𝑗  𝑤𝑡

𝑘𝑁𝑡
𝑗

𝑘=1   (8) 

     Where 𝑤𝑡
𝑗
 is the weight of the j-th feature point at time t, 

𝑁𝑡
𝑗
 is the number of particles the 𝑗𝑡𝑕  feature point belongs 

to, and 𝑤𝑡
𝑘  is the corresponding weight of the particle. 

     After obtaining the weight of feature points, a WLS 

algorithm can be used to estimate the global motion of the 

current frame. 

A =  𝑋𝑇 𝐴𝑋 −1  𝑋𝑇  𝐴𝑌  (9) 

     Where, A = diag (𝑊𝑡
1 , 𝑊𝑡

2 ,...𝑊𝑡
𝑁), N is the total number 

of feature points in a frame. Increasing the number of 

feature points in a particle will make the algorithm more 

robust. However, if particles are composed by the whole 

dataset of feature points, the weight of feature points would 

be identical and would degenerate. From experiments in it 

reveals that the accuracy of the motion estimation will firstly 

increase and then decrease with the increase of the number 

of feature points in a particle. 

     The global motion contains the intentional and 

unintentional motion. As we only want to compensate the 

transformation caused by unintentional camera movements, 

transformations due to intentional motion should be 

identified. We applied the Kalman filter to estimate the 

intentional motion of the camera. Kalman filter uses 

measurements that observed over time, containing noise 

(random variations) and other inaccuracies, and produces 

values that tend to be closer to the true values of the 

measurements and their associated calculated values. 

Assuming that translation, rotation and scale are 

independent, and then the four parameters can be modeled 

separately, which leads to simple state transition and 

observation models. The state space model is 
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𝑁(0, 𝜎𝑠)

𝑁(0, 𝜎𝜃)  
 
 
 
 
 
𝑡

  (10) 

     Where 𝑇𝑥  and 𝑇𝑦  are the translation vectors along x-axis 

and y-axis, 𝑉𝑥  and 𝑉𝑦  are the velocity vectors of 𝑇𝑥  and 𝑇𝑦 , 

respectively. S and 𝜃 are the accumulative scale and rotation 

factor. 𝑁(0, 𝜎𝑣𝑥), 𝑁(0, 𝜎𝑣𝑦), 𝑁(0, 𝜎𝑠) and 𝑁(0, 𝜎𝜃 ) are the 

system noise of 𝑉𝑥 , 𝑉𝑦 , S and 𝜃 respectively and t indicates 

the time step. 

     After obtaining the intentional motion estimation, the 

unintentional motion compensation can be computed as: 

 

 
𝑥
𝑦
1
 

𝑡

=  𝑆 𝑡  
cos 𝜃 − sin 𝜃 −𝑇 𝑥
sin 𝜃 cos 𝜃 −𝑇 𝑦

0 0 1

 

𝑡

 
𝑥
𝑦
1
 

𝑡−1

 (11) 

 

     Where 𝜃  =  𝜃𝑔 − 𝜃𝑖 , 𝑆  =  𝑆𝑔 − 𝑆𝑖 , 𝑇 𝑥  =  𝑇𝑥
𝑔
− 𝑇𝑥

𝑖  and 

𝑇 𝑦  =  𝑇𝑦
𝑔
− 𝑇𝑦

𝑖  are the unintentional motion estimation. 

Superscripts g and i indicate the global motion estimation 

and intentional motion estimation, respectively. 
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(b)   (c) 

 

Figure 5: Input frames extracted (a) Original sample, 

(b) Frame #1 (c) Frame #2 

 

 
(a) 

 

  
(b)   (c) 

Figure 6: Output compensated frames (a) Original sample, 

(b) Frame #1 (c) Frame #2 
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(a) 

 
(b) 

 

Figure 7: Graphs for MSE vs filter wavelength for existing 

and proposed methods of: (a) Frame # 1 and (b) Frame # 2 

 

     In the first series of experiments, the number of feature 

points in a particle to see its influence in estimation results. 

In the second series of experiments, approach was compared 

with other two video stabilization algorithms based on 

particle filtering. To evaluate the performance of the 

approach, ITF (Inter-frame Transformation Fidelity) 

measure is adopted: 

𝐼𝑇𝐹 =  
1

𝑁𝑓𝑟𝑎𝑚𝑒 −1
 𝑃𝑆𝑁𝑅(𝐾)

𝑁𝑓𝑟𝑎𝑚𝑒 −1

𝑘=1  (12) 

     where 𝑁𝑓𝑟𝑎𝑚𝑒  represents the number of video frames. 

 
(a) 

 
(b) 

 

Figure 8: Graphs for PSNR of existing and proposed 

methods of: (a) Frame # 1 and (b) Frame # 2 

 

𝑃𝑆𝑁𝑅(𝐾) is the Peak Signal-to-Noise Ratio which can be 

defined as: 

𝑃𝑆𝑁𝑅 𝐾 = 10 log10
𝐼𝑚𝑎𝑥

𝑀𝑆𝐸(𝐾)
 (13) 

     Where, 𝐼𝑚𝑎𝑥  is the maximum pixel intensity and 

𝑀𝑆𝐸(𝐾) is the Mean Square Error between consecutive 

frames. A higher ITF indicates a more accurate estimation. 

V. CONCLUSION 

     From above figures it can be noticed that when compared 

previous method proposed method is better where the time 

taken by the video stabilization using PCA and SIFT in 

particle filter framework algorithm is reduced. The issues 

leading to the error in the motion estimation are overcome 

by the proposed robust video stabilization based on particle 

filtering with weighted feature points technique by taking 

SURF and applying WLS algorithm. The proposed 

algorithm has the characteristics of high precision and good 

robustness. 
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