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Unconventional Mgnon Blockade Under the 

Sagenac Fizeau Shift in an Opto-Magnonic System: 

Parametric Amplification 
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Abstract: We propose to achieve and enhance the 

unconventional magnon blockade effect, based on a quantum 

destructive interference mechanism in an optomechanical-

magnetic system composed of a rotating cavity and a yttrium iron-

garnet (YIG) sphere. We introduce a degenerate parametric 

amplifier and derive the optimal parametric gain and phase to 

achieve magnon blockade analytically. By tuning the system 

parameters (weak coupling) and the driving detuning of the cavity 

and magnon modes, we achieve the smallest second-order magnon 

correlation function. The optomechanical cavity couples to the 

YIG sphere by magnetic dipole interaction. We achieve 

unconventional magnon blockade effects when the cavity is driven 

from a clockwise or counterclockwise direction. We introduce a 

new feature that combines the impact of destructive interference 

and energy-level anharmonicity to achieve magnon blockade. The 

equal-time second-order magnon correlation avoids time delay 

and rapid oscillation. In the input end of the system, two photons 

drive, and complete quantum destructive interference. This study 

opens a new window for physical applications, including the 

generation of single magnon sources, Quantum sensing, and 

Quantum simulation. Experimentally, we can control quantum 

noise and amplify the signal using parametric amplification.  

Key Words: Magnon Blockade, Sagenac-Fizeau shift, 

parametric amplification, 

I. INTRODUCTION

Magnon Blockade is a nonlinear phenomenon observed

in different optical and optomechanical systems and is also a 

topic of research interest. The concept of the blockade effect 

using a laser diode was first analyzed in 1964 by G. J. Lasher 

[1]. Earlier blockade research work concentrated on a two-

level atomic system, as the nuclear media provide resonantly 

enhanced nonlinearity. However, due to strong resonant 

absorption, the applications of a two-level system are 

restricted. Optical systems may overcome this challenge. In 

1983, Dorsel et al first experimentally observed the blockade 

in the field of optical cavity systems [2]. 
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Recently, the blockade of mean cavity photon number in 

various systems has been extensively studied, including 

semiconductor ring lasers, two-mode optomechanics, ring 

cavity double quantum dot molecules, Kerr nonlinear gaseous 

media, optomechanical systems with two-level atoms, 

photonic crystal nanocavities, hybrid optomechanical 

systems, and photonic-molecule optomechanics, among 

others [3]. The blockade nature is not only confined to the 

field of photonic systems, but it has also already been 

reported in the field of mechanical cavity-polariton magnetic, 

and cavity-transmon systems, and these are termed phononic 

blockade, polaritonic blockade, magnon blockade, and 

transmon blockade, respectively [4].  

Different types of nonlinear media offer blockade in various 

systems, such as the Kerr medium, semiconductor 

microcavity, and superconducting qubit, among others [5]. 

There are numerous works regarding bistability with Kerr 

media, for example, self-Kerr atomic gaseous media in a ring 

cavity, two-cavity magnonics systems, and coupled cavity 

systems [6]. Again, the First experimental evidence of 

blockade in semiconductor microcavities under strong 

coupling was performed by A. Bass et al [7]. Other 

experimental works were conducted by N. A. Gippius et al. 

and Ye-Larionova et al. regarding blockade in a 

semiconductor microcavity system. Y. Zhang et al 

theoretically investigated blockade in semiconductor 

microcavities in the presence of two lasers driving two cavity 

modes [8], [9]. These studies are all fascinating and 

impactful. However, all these studies are confined to fixed 

microcavity setups. However, to the best of our knowledge, 

rotation-based blockade has not been explored yet [10]. In the 

present work, we consider a rotating cavity system composed 

of III-V non-centrosymmetric semiconductor material and 

study the possibility of magnon blockade [11], [12]. We have 

proposed single-laser driving, where the cavity is driven from 

both its left and right sides [13], [14]. Rotating cavity 

resonator systems are essential in nanoparticle sensing and 

slow light generation [15].  

Magnon Blockade shall have practical applications in 

designing more efficient logic gate devices, optical switches, 

ultra-compact optical storage, all-optical wavelength 

converters, power limiters, optical transistors, memory 

elements, sensitive force detections, signal processing for 

quantum computing and solid-state quantum information 

processing [16][32]. Motivated by potential utility, we have 

illustrated the Blockade mechanism in this article.   

In this report, we theoretically analyse the Magnon 

Blockade phenomena in a 

rotating semiconductor micro-

cavity system. This brief 

report is arranged as follows: 
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first, we describe the theoretical model and stationary 

solution of the field mode by using the Heisenberg-Langevin 

equation of motion analytically and also numerically. Then 

we discussed the obtained results. At last, a conclusion is 

presented. 

II. THE MODEL 

Consider a cavity-magnon system presented in Figure 1. 

The optical cavity consists of a second-order nonlinearity and 

an optogenetic cavity [17]. The model Hamiltonian is given 

by [18], [19]: 

𝐻 = 𝐻𝑜 +𝐻𝐼 + 𝐻𝑑   …   (1) 

where 𝐻𝑜 = 𝜔𝑎𝑎
†𝑎 + 𝜔𝑏𝑏

†𝑏 +𝜔𝑚𝑚
†𝑚, describes the free 

evolution of the cavity system with bosonic annihilation 

operators 𝑎 and 𝑏. 𝑎 Mode corresponds to the fundamental 

mode with frequency. 𝜔𝑎 and 𝑏 for the second harmonic 

mode with frequency 𝜔𝑏, respectively and 𝑚†(𝑚) Is the 

creation (annihilation) operator of the magnon mode, where 

𝜔𝑚 Is the eigenfrequency of the magnon mode [20]. The 

typical value of the cavity resonance frequency of the 

fundamental mode 𝜔𝑎 = 2𝜋 × 163.195 THz and the quality 

factors for 𝑎 and 𝑏 modes are 𝑄𝑎 = 1.6 × 10
4 and 𝑄𝑏 =

3.2 × 104, respectively (if decay rates of both modes are the 

same), as reported in a micro-ring system [21], [22]. The part 

of the Hamiltonian 𝐻𝐼  Denotes the interaction when two 

optical fields meet, which can be written as 𝐻𝐼 = 𝑔(𝑏𝑎
†2 +

𝑏†𝑎2) + 𝑔𝑚𝑎(𝑎𝑚
† + 𝑎†𝑚), where 𝑔 is the photon hopping 

strength and 𝑔𝑚𝑎 denotes the coupling coefficient between 

the magnon and photon mode [23]. The strength related to 

nonlinear terms via the relation  

𝑔

= √
ℏ𝜔𝑎

2𝜖0𝑛𝑎
2𝑉𝑎
 
𝜔𝑏

2𝑛𝑏
2𝑉𝑏

∫𝑑𝑣 𝜒𝑖𝑗𝑘
(2)(𝑟)𝐸𝑎

𝑖 (𝑟)𝐸𝑏
𝑗(𝑟)𝐸𝑏

𝑘(𝑟)  …   (2) 

Where 𝑉𝑎,𝑏 Indicate the mode volume,  𝜒𝑖𝑗𝑘
(2)(𝑟) is the 

nonlinear susceptibility tensor, 𝐸𝑎,𝑏(𝑟) represent the spatial 

part of the field mode and follow the normalization condition 

∫𝑑𝑟|𝐸𝑎,𝑏(𝑟)|
2
= 1 and 𝑛𝑎,𝑏 Denote the number of photons 

for the optical field modes [24]. Second-order nonlinearity 

provides the conversion of a photon of mode 𝑎 to two photons 

of the mode 𝑏 or vice-versa. The cavity with 𝜒(2) Nonlinear 

materials are made of III-V semiconductors, which are non-

centrosymmetric [25]. The materials are higher 𝜒(2) such as 

GaAs, AlGaAs,GaN, BN, AlN and AlGaN [26], [37]. The 

photon hopping strength depends on the III-V semiconductor 

material used in the cavity [27], [28]. The typical value of 

hopping strength is ℏ𝑔 ≈ 2 × 10−5 eV as reported in 

experimental demonstration [29], [38]. The last part of the 

Hamiltonian 𝐻𝑑 describes the external driving field and reads 

as 𝐻𝑑 = Ω(𝑎
†𝑒−𝑖𝜔𝐿1𝑡 − 𝑎𝑒𝑖𝜔𝐿1𝑡) + 𝐹(𝑚†𝑒−𝑖𝜔𝐿2𝑡 −

𝑚𝑒𝑖𝜔𝐿2𝑡), where 𝜔𝐿1 and Ω are the driving frequency and the 

driving amplitude, respectively, and those of the magnon 

mode are 𝜔𝐿2 and 𝐹 with 𝜔𝐿1 = 𝜔𝐿2 = 𝜔𝐿 . The input power 

P relates to the driving amplitude by Ω =.√2𝑘𝑎𝑃 ℏ𝜔𝐿⁄  , 

where 𝑘𝑎 denotes the decay rate of the mode 𝑎. 

For a cavity resonator rotating at a fixed angular speed 𝜔𝑟 , 
the light circulating in the cavity resonator experiences a 

Sagnac-Fizeau shift, and the cavity resonance frequency is 

modified by 𝜔𝑘 → 𝜔𝑘 + Δ𝑆𝐹𝑘  [30]. The amount of shift is 

given by 

Δ𝑆𝐹𝑘 = ±
𝑛𝑟𝜔𝑘𝜔𝑟
𝑐

(1 −
1

𝑛2
−
𝜆

𝑛
 
𝑑𝑛

𝑑𝜆
)  …   (3) 

Where  𝑘 = 𝑎, 𝑏,𝑚 ; 𝑛 is the refractive index, 𝑟 Is the radius 

of the cavity, 𝜆 and 𝑐 are the wavelength and speed of light in 

free space [31], [32]. The angular acceleration of the cavity's 

rotation may vary from a few Hz to several GHz, as 

demonstrated in various experimental studies and theoretical 

investigations [33]. The Sagnac-Fizeau shift directly depends 

on the rotational speed of the cavity and the direction of input 

driving fields [34].  Δ𝑆𝐹𝑘 < 0 and Δ𝑆𝐹𝑘 > 0 Indicates that the 

external input light propagates along and against the direction 

of rotation of the cavity, i.e., the cavity is driven from its right 

and left, respectively, as shown in Figure 1b.   

 
[Fig.1: Schematic Depiction of Rotating Cavity System. When an External Field drives the Cavity from its (i) Left 

Side and (ii) Right Side] 

Considering the shift, the Hamiltonian becomes  

𝐻𝑠 = (𝜔𝑎 + Δ𝑆𝐹𝑎)𝑎
†𝑎 + (𝜔𝑏 + Δ𝑆𝐹𝑏)𝑏

†𝑏 + 𝜔𝑚𝑚
†𝑚 +

𝑔(𝑏𝑎†2 + 𝑏†𝑎2) + 𝑔𝑚𝑎(𝑎𝑚
† + 𝑎†𝑚) + Ω(𝑎†𝑒−𝑖𝜔𝐿1𝑡 −

𝑎𝑒𝑖𝜔𝐿1𝑡) + 𝐹(𝑚†𝑒−𝑖𝜔𝐿2𝑡 −𝑚𝑒𝑖𝜔𝐿2𝑡)   …   (4)   

In the rotating frame of the external driving field, based on 

the unitary operator 𝑈 = 𝑒
𝑖𝜔𝐿𝑡

2 (𝑎†𝑎 + 𝑏†𝑏 + 𝑚†𝑚), the 

Hamiltonian of equation (4) 

takes the form 

https://doi.org/10.35940/ijies.G1107.12060625
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𝐻𝑟 = (∆ + Δ𝑆𝐹)𝑎
†𝑎 + 2(∆ + Δ𝑆𝐹)𝑏

†𝑏 + Δ𝑚𝑚
†𝑚

+ 𝑔(𝑏𝑎†2 + 𝑏†𝑎2) + 𝑔𝑚𝑎(𝑎𝑚
† + 𝑎†𝑚)

+ Ω(𝑎† − 𝑎) + 𝐹(𝑚† −𝑚)  …    (5) 

with ∆= 𝜔𝑎 − 𝜔𝐿, Δ𝑚 = 𝜔𝑚 − 𝜔𝐿. According to the 

second harmonic generation 𝜔𝑏 = 2𝜔𝑎, if we consider 

Δ𝑆𝐹𝑎 = Δ𝑆𝐹  then Δ𝑆𝐹𝑏 = 2Δ𝑆𝐹. 

The eigenvalue equation of the system Hamiltonian can be 

expressed as 𝐻|Ψ𝑗〉 = 𝐸𝑗|Ψ𝑗〉 , where 𝑗 = 0, 1, 2, … . 𝐸𝑗 are the 

eigenenergies of the non-rotating system [35]. The 

eigenstates are |Ψ𝑗〉 and can be expressed in terms of a Fock 

state  |n𝑎 , n𝑏 , n𝑚〉, n𝑎, n𝑏 are the number of photons in 𝑎 and 

𝑏 modes and n𝑚 be the number of magnons in 𝑚 mode, 

respectively. Due to the rotation of the cavity, the 

eigenenergies are modified by the term  ±𝑗ℏ|Δ𝑆𝐹| , where ± 

corresponds to the upper and lower shifting of energy. 𝐸𝑗 , 

respectively [44]. The rotational speed of the cavity would 

follow the condition, |Δ𝑆𝐹| = 𝑔 2√2⁄  [45], [49]. We assume 

that the condition. 2𝜔𝑚 ≈ 𝜔𝐿≪𝜔𝑎 is satisfied, indicating that 

the cavity and magnon mode, owing to the larger frequency 

difference [36].  To achieve a reliable numerical calculation, 

we introduce the master equation for the density matrix. 𝜌 of 

the cavity magnon mode system.  
𝑑𝜌

𝑑𝑡
= −𝑖[𝐻𝑟 , 𝜌] +∑𝛾𝑘(𝐿𝑘𝜌𝐿𝑘

†

𝑘

−
1

2
{𝐿𝑘

†𝐿𝑘 , 𝜌})  …   (6) 

Where 𝛾𝑘(𝑘 = 𝑎, 𝑏,𝑚) are the decay rates,  and 𝐿𝑘 The 

Lindblad (dissipation) Operator represents the system–

environment interactions. For cavity damping 𝐿𝑎 = √𝛾𝑎𝑎 , 

𝛾𝑎 photon loss rates, for mechanical damping 𝐿𝑏 = √𝛾𝑏𝑏 , 𝛾𝑏 

phonon loss rates,  for the magnon mode 𝐿𝑚 = √𝛾𝑚𝑚 , 𝛾𝑚 

Magnon loss rates [37], [38]. 

  To obtain the statistical properties of the magnon mode, 

we introduce the equal-time second-order correlation 

function in the form: 

𝑔𝑚𝑚
2 (0) =

𝑇𝑟 (𝑚†2𝑚2𝜌𝑠𝑠)

[𝑇𝑟(𝑚†𝑚𝜌𝑠𝑠)]
2
=
< 𝑚†2𝑚2 >

< 𝑚†𝑚 >2
  …    (7) 

Where 𝜌𝑠𝑠 is the steady-state solution of the master 

equation. The second-order correlation function 𝑔𝑚𝑚
2 (0) 

could represent the single magnon degree. Where 𝑔𝑚𝑚
2 (0) <

1 indicates the sub-Poissonian statistics and magnon 

blockade and 𝑔𝑚𝑚
2 (0) > 1 Corresponds to super-Poissonian 

statistics.  

In the next section, we plot the mean magnon number and 

the behaviour of 𝑔𝑚𝑚
2 (0) as a function of system parameters, 

and give the energy level transition paths. 

III. UNCONVENTIONAL MAGNON BLOCKADE 

Here, we investigate the unconventional magnon blockade 

for this system. Now, the non-classical effects can be utilised 

by simplifying the energy level transition of this system. 

Under the weak coupling (𝑔, 𝑔𝑚𝑎 ≪ ∆, ∆𝑚, ∆𝑚) and driving 

conditions(𝐹, 𝛺 ≪ ∆, ∆𝑚, ∆𝑚) The Hamiltonian simplifies, 

and we analyse the energy level transitions using perturbation 

theory and the dressed-state picture, which can modify the 

transition frequency [39]. For the cavity mode, the allowed 

transitions are: |𝑛𝑎, 𝑛𝑏 , 𝑛𝑚 >→ |𝑛𝑎 ± 1, 𝑛𝑏 , 𝑛𝑚 > due to 

Ω(𝑎† − 𝑎), the detuning ∆ + ∆𝑆𝐹 Shifts the effective 

resonance frequency. For the magnon mode transitions 

|𝑛𝑎, 𝑛𝑏 , 𝑛𝑚 >→ |𝑛𝑎, 𝑛𝑏 , 𝑛𝑚 ± 1 > due to 𝐹(𝑚† −𝑚), the 

weak coupling 𝑔𝑚𝑎 Induces hybridization between magnon 

and photon states [40]. The steady-state wavefunction |𝜓 > 

of the system can be written as a linear combination of the 

probability amplitudes 𝐶𝑎𝑚 and the corresponding basis 

states |𝑎𝑚 >. Under the weak coupling regimes, the wave 

function of the optomechanical system can be expanded (For 

a truncated Hilbert space with up to N excitations in each 

mode) approximately: |𝜓 > = 𝐶00|0,0 > +𝐶01|0,1 >
+𝐶10|1,0 > +𝐶11|1,1 > +𝐶20|2,0 > +𝐶02|0,2 >
+⋯…………… 

So the Schrodinger equation of the system Hamiltonian is: 

|𝜓(𝑡) > = ∑ 𝐶𝑎𝑚(𝑡)|𝑎,𝑚 >𝑎,𝑚   …   (8)   

Substituting into the Schrodinger equation  

𝑖ħ∑
𝑑

𝑑𝑡
𝐶𝑎𝑚(𝑡)|𝑎,𝑚 > = 𝐻∑𝐶𝑎𝑚(𝑡)|𝑎,𝑚 >

𝑎,𝑚𝑎,𝑚

 

𝑖ħ
𝑑

𝑑𝑡
𝐶𝑎𝑚 = (∆ + Δ𝑆𝐹)𝑎𝐶𝑎𝑚 + 2(∆ + Δ𝑆𝐹)𝑚𝐶𝑎𝑚 +

Δ𝑚𝑚𝐶𝑎𝑚 + 𝑔[√(𝑎 + 1)(𝑎 + 2)𝐶(𝑎+2)𝑚 +

√𝑎(𝑎 − 1)𝐶(𝑎−2)𝑚] + 𝑔𝑚𝑎[√(𝑎 + 1)𝐶(𝑎+1)(𝑚−1) +

√𝑚𝐶(𝑎−1)(𝑚+1)] + Ω[√(𝑎 + 1)𝐶(𝑎+1)𝑚 − √𝑎𝐶(𝑎−1)𝑚] +

𝐹[√(𝑚 + 1)𝐶𝑎(𝑚+1) − √𝑚𝐶𝑎(𝑚−1)]    …   (9) 

The set of coupled differential equations is  

Vacuum State |0,0 > : 𝑖
𝑑

𝑑𝑡
𝐶00 = Ω𝐶10 + 𝐹𝐶01 

One Magnon State |0,1 > :𝑖
𝑑

𝑑𝑡
𝐶01 = (Δ𝑚 + 2(∆ +

Δ𝑆𝐹))𝐶01 + 𝐹𝐶00 + 𝑔𝑚𝑎𝐶10 

  One Photon State |1,0 > : 𝑖
𝑑

𝑑𝑡
𝐶10 = (∆ + Δ𝑆𝐹))𝐶10 +

Ω𝐶00 + 𝑔𝑚𝑎𝐶01 

Two-Photon State |2,0 > : 𝑖
𝑑

𝑑𝑡
𝐶20 = 2(∆ + Δ𝑆𝐹))𝐶20 +

√2Ω𝐶10 + 𝑔𝐶02 

Two-Magnon State |0,2 > : 𝑖
𝑑

𝑑𝑡
𝐶02 = 2(Δ𝑚 + 2(∆ +

Δ𝑆𝐹))𝐶02 + √2𝐹𝐶01 + 𝑔𝑚𝑎𝐶20 

One Photon one Magnon State |1,1 >: 𝑖
𝑑

𝑑𝑡
𝐶11 = (∆ + Δ𝑆𝐹 +

Δ𝑚)𝐶11 + 𝐹𝐶10 +  Ω𝐶01 + +𝑔𝑚𝑎𝐶20 + 𝑔𝑚𝑎𝐶02 

For the steady-state solution, we set the time derivatives of 

all probability amplitudes. 𝐶𝑎𝑚 = 0. So, from the previously 

derived coupled differential equations, we get: 

0= Ω𝐶10 + 𝐹𝐶01 

0= (Δ𝑚 + 2(∆ + Δ𝑆𝐹))𝐶01 + 𝐹𝐶00 + 𝑔𝑚𝑎𝐶10 

  0= (∆ + Δ𝑆𝐹))𝐶10 + Ω𝐶00 + 𝑔𝑚𝑎𝐶01 

0= 2(∆ + Δ𝑆𝐹))𝐶20 + √2Ω𝐶10 + 𝑔𝐶02 

0= 2(Δ𝑚 + 2(∆ + Δ𝑆𝐹))𝐶02 + √2𝐹𝐶01 + 𝑔𝑚𝑎𝐶20 

0= (∆ + Δ𝑆𝐹 + Δ𝑚)𝐶11 + 𝐹𝐶10 +  Ω𝐶01 ++𝑔𝑚𝑎𝐶20 +
𝑔𝑚𝑎𝐶02 

We solve these equations in a matrix inversion method, so 

the matrix form of this equation is (Appendix [A]): 

https://doi.org/10.35940/ijies.G1107.12060625
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(

 
 
 
 

0 0 Ω 0 0 𝐹
0 (Δ𝑚 + 2(∆ + Δ𝑆𝐹)) 𝑔𝑚𝑎 0 0 𝐹

Ω 𝑔𝑚𝑎 (∆ + Δ𝑆𝐹) 0 0 0

0 0 √2Ω 2(∆ + Δ𝑆𝐹) 𝑔 0

0 √2𝐹 0 𝑔𝑚𝑎 2(Δ𝑚 + 2(∆ + Δ𝑆𝐹)) 0

0 Ω 𝐹 𝑔𝑚𝑎 𝑔𝑚𝑎 (∆ + Δ𝑆𝐹 + Δ𝑚))

 
 
 
 

(

 
 
 

𝐶00
𝐶01
𝐶10
𝐶20
𝐶02
𝐶11)

 
 
 
=

(

  
 

0
0
0
0
0
0)

  
 

 

Now we compute the second-order correlation function. 

𝑔𝑚𝑚
2 (0), with the help of the steady-state probability 

amplitudes. Now, the expectation values using the probability 

amplitudes are the mean number of magnons.   

< 𝑚†𝑚 > = 1|𝐶10|
2 + 2|𝐶20|

2 + 1|𝐶11|
2 

< 𝑚†2𝑚2 > = 2|𝐶20|
2 

So the second-order correlation 𝑔𝑚𝑚
2 (0) =

2|𝐶20|
2

(1|𝐶10|
2+2|𝐶20|

2+1|𝐶11|
2)2
  …   (10) 

IV. RESULTS AND DISCUSSIONS 

In this section, we present the magnon antibunching effect 

using both numerical and analytical simulations under a 

rotational opto-magnonic system. The Sagnac-Fizeau shift 

directly depends on the rotational speed of the cavity and also 

on the direction of the input driving fields.  Δ𝑆𝐹𝑘 < 0 and 

Δ𝑆𝐹𝑘 > 0 indicates that the external input light propagates 

along and against the direction of rotation of the cavity, i.e., 

the cavity is driven from its right and left [41]. Here, we 

investigate the unconventional magnon blockade under the 

Sagnac Fizeau shift in an opto-magnonic system. Non-

classical phenomena can be analysed both analytically and 

numerically under weak coupling and driving mechanisms. 

Surprisingly, we achieved the antibunching condition, and 

destructive interference occurs between the transition paths, 

so we conclude that unconventional magnon blockade was 

perfectly achieved. Our analytical results agree with the 

numerical results but differ slightly in the optimal situation. 

This is due to perturbation in analytical simulation, where 

quantum jumps are neglected in finite dimensions. In 

contrast, numerical simulation utilises the Lindblad master 

equation, allowing the magnon and photon to remain in the 

same state under minimal driving conditions.  

We numerically solve the system to compute 𝑔𝑚𝑚
2 (0)for 

the magnon mode to study the statistical property of the 

magnon mode using the QuTiP package in Python. In Figures 

2a- 2h, we first investigate analytically the effect of the 

second-order correlation function. (𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)))  as a 

function of normalized Sagenac Fizeau shift and normalized 

by magnon loss rates (𝛾𝑚) [42]. The system is driven in both 

clockwise and counterclockwise directions. We observe from 

Figure 2 that when the cavity is driven in the clockwise and 

counterclockwise directions, the second-order correlation 

function is less than or greater than one, indicating the 

magnon antibunching and bunching effects. The statistical 

property of the magnon satisfies a sub-Poissonian distribution 

and super-Poissonian situation under the above condition, so 

that a single magnon can be achieved due to the opposite 

Sagnac Fizeau shift [43]. We achieved that when the Δ𝑚 = 0, 

the value of 𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)) ~ − 14 and 

𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)) ~17.5 (Fig. -2h) under the various system 

parameters, which implies the unconventional magnon 

blockade under the  Sagenac Fizeau shift 

    
(2a)                                                                   (2b) 

 
(2c)      (2d) 
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(2e)                                                              (2f) 

 
(2g)                                                                      (2h) 

[Fig.2: Second-Order Correlation Function as a Function of Sagenac Fizeau Shift Normalized by Magnon Decay 

Rates.(2a-2c): 𝒈𝒎𝒂 = 𝟐𝝅 × 𝟏. 𝟎 𝑴𝑯𝒛, 𝑭 = 𝟎. 𝟎𝟏 𝑵/𝒎, 𝜸𝒎 = 𝟎. 𝟐 𝑮𝑯𝒛, 𝛀 = 𝟐𝛑 × 𝟏 GHz,  (2a) ∆/𝜸𝒎 = 𝟏. 𝟎, 𝚫𝑺𝑭/𝜸𝒎 =
𝟖. 𝟓¸ 𝒈 = 𝟐𝛑 × 𝟎. 𝟏 MHz, 𝟏. 𝟎, 𝚫𝒎/𝜸𝒎 = 𝟏. 𝟎, (2b) ∆/𝜸𝒎 = 𝟏. 𝟓, 𝚫𝑺𝑭/𝜸𝒎 = 𝟖. 𝟓¸ 𝒈 = 𝟐𝛑 × 𝟎. 𝟓 MHz, 𝟏. 𝟎, 𝚫𝒎/𝜸𝒎 =

𝟏. 𝟓, (2c) ∆/𝜸𝒎 = 𝟏. 𝟓, 𝚫𝑺𝑭/𝜸𝒎 = 𝟖. 𝟓¸ 𝒈 = 𝟐𝛑 × 𝟏. 𝟓 MHz, 𝟏. 𝟎, 𝚫𝒎/𝜸𝒎 = 𝟐. 𝟎,(5d-5f): 𝒈𝒎𝒂 = 𝟎, 𝑭 =
𝟎. 𝟎𝟓 𝑵/𝒎, 𝜸𝒎 = 𝟎. 𝟐 𝑮𝑯𝒛, 𝛀 = 𝟐𝛑 × 𝟏 GHz,  (2d) ∆/𝜸𝒎 = 𝟏. 𝟎, 𝚫𝑺𝑭/𝜸𝒎 = 𝟖. 𝟓¸ 𝒈 = 𝟐𝛑 × 𝟎. 𝟏 MHz, 𝟏. 𝟎, 𝚫𝒎/𝜸𝒎 =
𝟏. 𝟎, (2e) ∆/𝜸𝒎 = 𝟏. 𝟓, 𝚫𝑺𝑭/𝜸𝒎 = 𝟖. 𝟓¸ 𝒈 = 𝟐𝛑 × 𝟎. 𝟓 MHz, 𝟏. 𝟎, 𝚫𝒎/𝜸𝒎 = 𝟏. 𝟓, (2f) ∆/𝜸𝒎 = 𝟏. 𝟓, 𝚫𝑺𝑭/𝜸𝒎 = 𝟖. 𝟓¸ 𝒈 =

𝟐𝛑 × 𝟏. 𝟓 MHz, 𝟏. 𝟎, 𝚫𝒎/𝜸𝒎 = 𝟐. 𝟎] 

In Figures 3a- 3c, we plot 𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)) as a function of 

normalized Δ𝑚 numerically and normalized by cavity decay 

rates  𝛾𝑎. In this section, the magnon blockade emerges from 

nonlinear interaction and the presence of strong coupling. The 

strong photon-magnon coupling 𝑔𝑚𝑎 Hybridises photons and 

magnons, which enables the magnon blockade. In our system, 

the practical Kerr nonlinear terms exceed dissipation, 

allowing magnon blockade to manifest as the suppression of 

multi-magnon excitations. To achieve the magnon blockade 

numerically, we neglected the fast-oscillating terms and then 

simplified the numerical calculations. The other system 

parameters are: ∆/𝛾𝑚 = 0.5,   Δ𝑆𝐹/𝛾𝑚  = 0.05,  Δ𝑚/𝛾𝑚 =
0.55, 𝑔 = 2π × 0.6 MHz, 𝑔𝑚𝑎 = 2π × 0.2 MHz, Ω = 2π ×

0.02 GHz, 𝐹 = 0.02 𝑁/𝑚. To achieve the magnon blockade 

numerically, we first rotate from the left side and then from 

the right side,   Δ𝑆𝐹 > 0(left side) represents Figure 3a, 

  Δ𝑆𝐹 < 0(right side) represents Figure 3b. Therefore, the sign 

in the rotating frame affects both the energy spectrum and the 

nonlinear term. For   Δ𝑆𝐹 > 0. The energy spectrum favours 

up-conversion processes that are photon absorption and 𝑔 

enhance energy costs for two-magnon excitations, under 

which we observed strong anti-bunching effects [44].   Δ𝑆𝐹 <
0 The energy spectrum favours a down-conversion process of 

photon emission that is slightly different but still achieves 

blockade. 

 
(3a)                                                                       (3b) 
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(3c 

[Fig.3: Second-Order Correlation Function as a Function of Magnon Detuning, Normalised by Cavity Decay Rates, 

Under a logarithmic scale.(3a-3c): 𝑔𝑚𝑎=2𝜋×1.0 𝑀𝐻𝑧, 𝐹=0.01 𝑁/𝑚, 𝛾𝑚=0.2 𝐺𝐻𝑧, Ω=2π×1 GHz,  (3a) ∆/𝛾𝑚=0.5,  

Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.1 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.0, (3b) ∆𝛾𝑚=−0.5,  Δ𝑆𝐹/𝛾𝑚=−8.5¸ 𝑔=2π×0.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.5, (3c) 

∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×1.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=2.0] 

In Figures 4a- 4f, we plot 𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)) as a function of 

Δ𝑚  and Δ𝑆𝐹  Under various system parameters, Figure 4g-4i 

represents the plot of 𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)) as a function of Δ𝑚 

normalized by 𝛾𝑚 and Δ𝑎 normalized by 𝛾𝑎. In our study, a 

rotating cavity containing a magnetic material interacts with 

microwave photons. When the cavity rotates from left to right 

(clockwise), the rotational Doppler shift modifies the 

effective magnon frequency, leading to changes in magnon-

photon coupling dynamics. The contour plots of second-order 

correlation provide information on the blockade mechanism 

and enhance visualisation. As the cavity rotates left to right, 

the frequency of the magnon mode modifies at the resonance 

condition (Fig. 4g, 4i) and gives 𝑔𝑚𝑚
2 (0) < 1 along the 

detuning axis, reflecting the change in magnon frequency due 

to rotation [45]. In Figures 4a, 4b, and 4g, we get a blockade 

under zero detuning and no rotation. When the cavity rotates 

left to right, the blockade region shifts right proportional to 

the rotating rates Figure 4c, 4d. When the cavity rotates right 

to left, the single line splits into two fragments proportional 

to the rotating rates, Figure 4h, 4i and indicates double 

magnon excitation. Therefore, the tunable blockade region 

with cavity rotation can be leveraged for on-demand control 

of magnon blockade, which has potential applications in 

quantum information processing and the study of non-

classical states of magnons. 

 
(4a)                                                                             (4b) 

 
(4c)                                                                    (4d) 
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(4e)                                                                 (4f) 

 
(4g)                                                                     (4h) 

 
(4i) 

[Fig.4: Second-Order Correlation Function as a Function of Magnon Detuning Under a Logarithmic Scale, as a 

Function of Magnon Detuning Over Sagenac Fizeau Shift and Magnon Detuning Over Cavity Detuning. (4a-5c): 

𝑔𝑚𝑎=2𝜋×1.0 𝑀𝐻𝑧, 𝐹=0.01 𝑁/𝑚, 𝛾𝑚=0.2 𝐺𝐻𝑧, Ω=2π×1 GHz,  (5a) ∆/𝛾𝑚=1.0,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.1 MHz, 1.0,  

Δ𝑚/𝛾𝑚=1.0, (5b) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.5, (5c) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×1.5 

MHz, 1.0,  Δ𝑚/𝛾𝑚=2.0,(5d-5f): 𝑔𝑚𝑎=0, 𝐹=0.05 𝑁/𝑚, 𝛾𝑚=0.2 𝐺𝐻𝑧, Ω=2π×1 GHz,  (5d) ∆/𝛾𝑚=1.0,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 

𝑔=2π×0.1 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.0, (5e) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.5, (5f) ∆/𝛾𝑚=1.5,  

Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×1.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=2.0] 

In our Hamiltonian system, the interaction term i Heritia g 

sub m a. , open paren a. m to the † plus a. to the † Heritia 

𝑔𝑚𝑎(𝑎𝑚
† + 𝑎†) represents the reciprocal coupling, and the 

interaction non-Hermtian 𝑔𝑚𝑎(𝑎𝑚
†) represents 

nonreciprocal coupling. In Figures 5a- 5f, we plot. 

𝑙𝑜𝑔10(𝑔𝑚𝑚
2 (0)) as a function of temperature for the study of 

reciprocal and non-reciprocal coupling. In this section, we 

study the reciprocal and nonreciprocal unconventional 

magnon blockade effect under the influence of the 

environmental temperature (T) using the master 

equation(equation 6), adding the dissipative term 

𝑛𝑡ℎ𝛾𝑚{𝐿𝑚[𝜌] + 𝐿𝑚
†[𝜌]} where the 𝑛𝑡ℎ =

1

𝑒

𝜔𝑚
𝑘𝐵𝑇−1

 is the 

thermal magnon number and 𝑘𝐵 be the Boltzmann constant 

and T be the temperature [46]. We observe the 

unconventional magnon blockade under various temperature 

regimes (at high and low-

temperature limits). 

Reciprocal coupling enhances 

energy sharing ( 𝑔𝑚𝑎 ≠ 0) 
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and Non-reciprocal coupling (𝑔𝑚𝑎 = 0) no energy exchange 

with the magnon state, so that only the magnon state is 

thermalised by the driving term F. Figures 5a- 5c represent 

the high temperature limits 𝑇 = 64 𝑚𝑘 , ∆/𝛾𝑚 = 1.0, Δ𝑆𝐹/
𝛾𝑚 = 8.5¸ 𝐹 = 0.01 𝑁/𝑚, Ω = 2π × 1 At GHz, we observe 

that thermal noise dominates, referred to as thermal bunching, 

and low temperatures limit this effect. 𝑇 = 10 𝑚𝑘 , ∆/𝛾𝑚 =
2.0, Δ𝑆𝐹/𝛾𝑚 = 8.5¸ 𝐹 = 0.1 𝑁/𝑚, Ω = 2π × 1.5 At GHz, 

the magnon starts to be excited from the vacuum, which 

represents the quantum antibunching effect (figure 5d-5f) 

[47]. We observed that at the input end of the system, when 

two photons drive it, complete quantum destructive 

interference appears and disappears in different paths for two 

magnon excitations due to the opposite Sagnac Fizeau shifts 

induced by Fizeau drag, which represents the nonreciprocal 

unconventional magnon blockade. 

 
(5a)                                                                  (5b) 

 
(5c)                                                                    (5d) 

           
(5e)                                                                           (5f) 

[Fig.5: Second-Order Correlation Function as a Function of Environment Temperature, Magnon Mode, for Different 

Coupling Modes.(5a-5c): 𝑔𝑚𝑎=2𝜋×1.0 𝑀𝐻𝑧, 𝐹=0.01 𝑁/𝑚, 𝛾𝑚=0.2 𝐺𝐻𝑧, Ω=2π×1 GHz,  (5a) ∆/𝛾𝑚=1.0,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 

𝑔=2π×0.1 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.0, (5b) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.5, (5c) ∆/𝛾𝑚=1.5,  

Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×1.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=2.0,(5d-5f): 𝑔𝑚𝑎=0, 𝐹=0.05 𝑁/𝑚, 𝛾𝑚=0.2 𝐺𝐻𝑧, Ω=2π×1 GHz,  (5d) 

∆/𝛾𝑚=1.0,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.1 MHz, 1.0,  Δ𝑚/𝛾𝑚=1.0, (5e) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×0.5 MHz, 1.0,  

Δ𝑚/𝛾𝑚=1.5, (5f) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸ 𝑔=2π×1.5 MHz, 1.0,  Δ𝑚/𝛾𝑚=2.0] 

Energy is transferred from the strong pump field to the 

signal mode in connection with the nonlinear interaction 

term. In our Hamiltonian, the term g open paren b a. to the, 

†2 end superscript plus b to the †, a. squared, close paren 

gives the down conversion (Pump goes to two a. photons) and 

upconversion (wo a. photons goes to Pump). So, to squeeze 

the quadrature nose and amplify variances equals numerator, 

a. plus a. troot of 2 =
𝑎+𝑎†

√2
, 𝑃 =

𝑎−𝑎†

𝑖√2
 . In this 

regime, we analyze how much 

the frequency sponse of the 
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system (the applied input signals are various frequency 

regimes) is amplified [48]. We solve it by using the linearised 

Heisenberg-Langevin equation (numerically using time-

evolving operators). In figures 6a –6d, we plot the growth of 

less than a.a.plot growth of < 𝑎𝑎† >under coherent input for 

the study of the parametric amplification [49]. 

 

 
(6a)                                                                         (6b) 

       
(6c)                                                                        (6d) 

[Fig.6: Represents the Parametric Amplification as a Function of Time. The Different System Parameters Are: 

𝑔=2π×0.1 MHz, 𝑔𝑚𝑎=2𝜋×1.0 𝑀𝐻𝑧, 𝐹=0.01 𝑁/𝑚, 𝛾𝑚=0.2 𝐺𝐻𝑧, Ω=2π×1 GHz,  (6a) ∆/𝛾𝑚=1.0,  Δ𝑆𝐹/𝛾𝑚=8.5¸   

Δ𝑚/𝛾𝑚=1.0, (6b) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸   Δ𝑚/𝛾𝑚=2.0, (6c) ∆/𝛾𝑚=1.5,  Δ𝑆𝐹/𝛾𝑚=8.5¸   Δ𝑚/𝛾𝑚=1.0, (6d) ∆/𝛾𝑚=1.5,  

Δ𝑆𝐹/𝛾𝑚=5.0¸   Δ𝑚/𝛾𝑚=3.0,] 

V. CONCLUSIONS 

In conclusion, we have investigated the unconventional 

magnon blockade effect in a cavity magnonic system rotating 

under a fixed angular speed, the light circulating in the cavity 

resonator experiences a Sagnac-Fizeau shift, and the cavity 

resonance frequency is modified by 𝜔𝑘𝜔𝑘 + Δ𝑆𝐹𝑘. In this 

study, we also represent the logarithmic second-order 

correlation function analytically and numerically. By 

performing analytical and numerical analyses while tuning 

different system parameters, we achieved an unconventional 

magnon blockade effect and a non-reciprocal magnon 

blockade effect at a fixed angular speed, subscript base, 

subscript base, omega, end base, sub r. We plot the 

logarithmic second-order correlation as a function of magnon 

detuning and Sagnac Fizeau shift, as a function of 

environmental temperature, and as a function of cavity 

detuning and magnon detuning. We represent parametric 

amplification to squeeze quadrature noise and amplify the 

signal in communication technology. We established the 

condition of a non-reciprocal coupling regime under 

controlled temperature and thermal magnon noise. When two 

photons drive it, complete quantum destructive interference 

appears and disappears in different paths for two magnon 

excitations due to the opposite Sagnac Fizeau shifts induced 

by Fizeau drag, which represents the nonreciprocal 

unconventional magnon blockade. Our proposal explores the 

potential application of quantum communication technology, 

utilising it to generate a single magnon source and amplify 

the input signal through parametric amplification factors. 
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APPENDIX [A] 

By using the Python program, we can solve the probability 

amplitudes.  

𝐶01 = −
𝐹𝐶00 + 𝑔𝑚𝑎𝐶10

(Δ𝑚 + 2(∆ + Δ𝑆𝐹))
 

𝐶10 = −
Ω𝐶00 + 𝑔𝑚𝑎𝐶01 + 2𝑔𝐶20 + 𝑔𝐶11

(∆ + Δ𝑆𝐹)
 

𝐶20 −
√2Ω𝐶10
2(∆ + Δ𝑆𝐹)

 

𝐶02 =
√2𝐹(𝐹𝐶00 + 𝑔𝑚𝑎𝐶10)

(Δ𝑚 + 2(∆ + Δ𝑆𝐹))
2
−

𝑔𝑚𝑎𝐶20
2(Δ𝑚 + 2(∆ + Δ𝑆𝐹))

 

𝐶11 = −
𝑔𝐶01 + 𝑔𝑚𝑎𝐶20

∆ + Δ𝑆𝐹 + Δ𝑚 + 2(∆ + Δ𝑆𝐹))
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