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Abstract: Material efficiency has become a central objective in 

contemporary building design, driven by urgent environmental 

imperatives and the growing need to reduce resource 

consumption. This systematic review examines the role of 

advanced structural modelling techniques in the development of 

load-optimised, materially efficient structures. Emphasising the 

synergy between structural form and force flow, the study 

investigates the application of computational tools, including 

finite element analysis (FEA), topology optimisation, parametric 

design, and AI-driven modelling strategies. These approaches 

enable designers to align structural geometry with internal stress 

patterns, reducing excess material use without sacrificing safety 

or performance. The review synthesises recent innovations in 

form-finding methods, geometry-informed optimisation, and 

performance-based design workflows that collectively support 

material minimisation strategies. Special attention is given to 

how these tools are implemented in various structural typologies, 

including shell structures, high-rise systems, and freeform 

architecture, demonstrating the practical viability and 

environmental benefits of computationally guided design. In 

addition to technical advances, the review identifies key 

challenges facing the broader adoption of these methods. These 

include limitations in computational accuracy, difficulties in 

scaling up optimization techniques, and the persistent divide 

between architectural and engineering practices. The analysis 

highlights the importance of interdisciplinary collaboration and 

robust feedback loops between digital modelling, structural 

analysis, and material behaviour. Ultimately, the findings 

advocate for a paradigm in which structural mechanics serves 

not only as a tool for verification but also as a generative driver 

of form. By leveraging emerging modelling techniques, the 

construction industry can move toward a more sustainable 

trajectory—one where resource efficiency, structural integrity, 

and architectural expression coexist harmoniously. This 

systematic review contributes to ongoing discourse on how digital 

technologies and structural intelligence can inform the design of 

buildings that are not only innovative and efficient but also 

environmentally responsible. 
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I. INTRODUCTION

The construction industry is a significant contributor to

global material consumption and greenhouse gas emissions. 

As the demand for sustainable building practices intensifies, 

enhancing material efficiency has become a paramount 

objective. Advanced structural modelling techniques offer 

promising avenues for achieving load-optimised designs that 

minimise material usage without compromising structural 

integrity. 

Traditional design methodologies often rely on empirical 

rules and safety factors, which, while ensuring safety, can 

result in over-engineered structures with excessive material 

usage. In contrast, computational methods enable precise 

simulations of structural behavior under various loading 

conditions, facilitating the design of structures that are both 

safe and material-efficient. 

Form-finding techniques, such as those utilizing finite 

element methods, have been instrumental in identifying 

optimal structural forms that naturally align with force 

flows, thereby reducing unnecessary material usage. 

Bletzinger et al demonstrated the efficacy of these methods 

in the design of membranes and shells, highlighting their 

potential in achieving material efficiency through structural 

optimization [1]. Moreover, the integration of machine 

learning into structural design processes has opened new 

frontiers in optimization. Schumacher et al introduced a 

machine-learning-enhanced form-finding strategy that 

adapts to complex design constraints, offering improved 

structural efficiency and material savings [2]. 

This systematic review aims to explore the advancements 

in structural modeling techniques that contribute to material 

efficiency in building design. By examining various 

methodologies, including form-finding, optimisation 

algorithms, and machine learning applications, this review 

aims to provide a comprehensive understanding of how 

these approaches can be leveraged to achieve sustainable 

and efficient structural 

designs. 
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II. RESEARCH SELECTION METHOD 

This review follows the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) 

methodology as shown in Figure 1. 

A. Search Strategy (2010–2025) 

To ensure a comprehensive review of the literature, a 

structured and reproducible search strategy was developed 

and applied across multiple academic databases, including 

Scopus, Web of Science, ScienceDirect, and Google 

Scholar. The search covered literature published between 

January 2010 and April 2025. 

Filters were applied to limit results to peer-reviewed 

journal articles, conference proceedings, and review 

papers published in English. 

i. Databases Searched: Scopus, Web of Science, 

Science Direct, ASCE Library, and Google 

Scholar. 

ii. Search Terms: "material-efficient design," 

"computational structural mechanics," "topology 

optimisation," "structural modelling for buildings," 

"finite element analysis in structural design." 

iii. Inclusion Criteria: Peer-reviewed articles (2010–

2025), studies focusing on computational 

mechanics in structural optimization, and research 

addressing material savings in buildings. 

iv. Exclusion Criteria: Non-building applications 

(e.g., aerospace), purely theoretical studies without 

material use implications, and studies before 2010. 

B. Distribution Results 

Figure 2 shows the papers included by year and topic 

domain, revealing trends in the adoption of material-

efficient modelling techniques. These papers were published 

over the past 15 years (2010–2025). 

 
[Fig.1: A PRISMA Flowchart Strategy to Detect, 

Filter, and Incorporate Relevant Studies] 

 
[Fig.2: Publication Trend (2010–2025)] 

C. Scientometrics Analysis 

This scientometric inquiry utilised academic databases to 

systematically collect and analyse data related to essential 

components, including keywords, publication year, 

institutional affiliations, and authorship.  

i.  Number of articles per year: Figure 3 shows the 

yearly distribution of articles related to Advanced 

Structural Modelling for Load-Optimisedd Building 

Design in structural engineering from 2010 to 2025.  

 

 
[Fig.3: The Number of Articles From 2010 to 2025] 

ii. Frequent publishing organisations: Figure 4 showing 

the top 12 publishing organisations in "Advanced 

Structural Modelling for Load-Optimised Building 

Design" from 2010 to 2025. Elsevier Ltd. leads the 

list, with other key contributors like Springer Nature, 

ASCE, and Taylor & Francis following closely. 

 

 
[Fig.4: Frequently Publishing Organizations] 

iii. Mapping the knowledge:  chart showing the most 

prolific journals contributing to the field of Advanced 

Structural Modelling for Load-Optimised Building 

Design between 2010 and 2025.  

 

 
[Fig.5: Publishing Journals Contributing to the Structural 

Engineering Domain’s Advanced Structural Modeling] 

iv. Keyword frequency 

occurrences: figure 

presents the key- word 

occurrences from the 
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reviewed works. It shows the frequency distribution 

of keywords in the examined works on "Advanced 

Structural Modelling for Load-Optimised Building 

Design" from 2010 to 2025.  

 

 

[Fig.6: Frequency Distribution of Keywords in the 

Examined Work] 

v. An investigation of bibliographic coupling focused 

on the country of origin. Figure 8 depicts the number 

of nations for research on Advanced Structural 

Modelling for Load-Optimised Building Design" 

from 2010 to 2025 for structural engineering 

applications. The four nations (USA, China, 

Germany, UK, and Canada) dominate this graph. 

 

 

[Fig.7: Distribution of Publications Based on Their 

Country of Origin] 

III. ADVANCES IN STRUCTURAL AND 

COMPUTATIONAL MECHANICS 

Recent advancements in structural and computational 

mechanics have unlocked new possibilities for material-

efficient design by enabling higher fidelity analysis of load 

paths, stress distributions, and failure mechanisms [3]. 

Unlike traditional design approaches that often rely on 

simplified linear elastic models and safety factors, these 

modern methods provide deeper insights into structural 

behaviour, allowing engineers to align material placement 

more closely with actual performance demands [4]. 

A. Nonlinear and High-Fidelity Finite Element Analysis 

Nonlinear finite element analysis (FEA) plays a central 

role in material-efficient design. It incorporates geometric 

nonlinearity, material plasticity, and significant deformation 

effects that are particularly important in slender, shell, or 

long-span structures [5]. Nonlinear analyses allow more 

accurate predictions of load redistribution and energy 

dissipation, thus reducing overdesign. For example, in 

studies of steel dome structures, incorporating nonlinear 

buckling behaviour led to up to 25% material savings 

without compromising safety [6]. 

B. Multiscale and Multi-Fidelity Modelling 

Multiscale modelling integrates microscale material 

behaviour into the macroscale structural performance. This 

is particularly useful in concrete, composite, or bio-inspired 

materials where heterogeneity plays a crucial role. The 

combination of multiscale simulations with data-driven 

surrogate modelling or reduced-order models (ROMs) 

allows for rapid yet reliable structural analysis, especially 

useful in early-stage design optimization [7]. Additionally, 

hierarchical multi-fidelity approaches help balance accuracy 

and computational cost, enhancing iterative design 

workflows. 

C. Adaptive Mesh and Sensitivity-Based Analysis 

Adaptive meshing strategies improve accuracy in stress-

concentrated regions (e.g., openings, supports) while 

reducing computational cost in less critical zones [8]. When 

coupled with sensitivity analysis, they enable performance-

driven mesh refinement and facilitate gradient-based 

optimization in topology and shape refinement tasks. 

Sensitivity-based structural analysis has also been 

instrumental in identifying underperforming regions that can 

be safely removed, resulting in optimised geometries. 

D. Mechanics-Driven Feedback for Parametric Design 

Mechanics-informed design tools are increasingly 

integrated into parametric environments (e.g., Rhino-

Grasshopper with Karamba3D), allowing real-time feedback 

on stress distribution, displacement, and structural 

utilization during geometry development. This integration 

fosters a form-finding approach guided by physical 

principles, in contrast to purely geometric or stylistic 

methods [9]. 

 

 
[Fig.8: Conceptual Comparison Between Traditional 

Linear Design Approaches and Advanced Nonlinear] 
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Table-I: Comparison of Modelling Approaches in Structural Mechanics Relevant to Material-Efficient Design 

Modeling Approach Key Features Material Saving Potential Use Cases Reference 

Linear FEA Static load, homogeneous material, fixed mesh Low (baseline) Standard beam/slab sizing [10] 

Nonlinear FEA Buckling, plasticity, and large deformations 
Moderate to High (15–

30%) 

Domes, shells, and long-span 

structures 
[5] 

Multiscale Modeling Microscale heterogeneity, hierarchical simulation High (20–40%) Composite & concrete materials [7] 

Adaptive Mesh FEA 
Local mesh refinement, error-controlled 

convergence 
Moderate (10–20%) Connections, openings, supports [8] 

Sensitivity-Based Analysis Derivative-based performance gradients High (20–35%) Optimisation workflows [4] 

Mechanics in Parametric 

CAD 
Real-time physics-based feedback in design tools Moderate to High 

Conceptual and architectural 

design 
[9] 

 

E. Summary and Implications for Material Efficiency 

Incorporating advanced mechanics into the structural 

design process has demonstrated consistent potential for 

material savings in both theoretical and real-world projects. 

However, wider adoption remains limited due to challenges 

such as computational cost, model calibration, and the need 

for interdisciplinary collaboration between designers and 

structural engineers. Addressing these barriers can unlock 

significant sustainability gains in building construction. 

IV. TOPOLOGY AND SHAPE OPTIMIZATION 

The pursuit of material efficiency in structural design has 

been significantly advanced through the application of 

topology and shape optimisation. These computational 

approaches aim to determine the most effective geometry 

and material distribution within a given design space, 

subject to specific loading and boundary conditions [10]. 

Unlike traditional structural design, which often uses 

heuristic rules and standardized cross-sections, topology and 

shape optimization are performance-driven, leading to 

innovative and highly efficient load paths with minimal 

material use [12]. 

A. Topology Optimization: Fundamentals and 

Applications 

Topology optimization (TO) determines the optimal layout 

of material within a given design domain by solving a 

constrained optimization problem. The most common 

formulation is the SIMP method (Solid Isotropic Material 

with Penalization), which penalizes intermediate material 

densities to drive the solution toward a discrete 0–1 material 

distribution [15]. TO has been successfully applied to 

structural components, frames, and entire buildings to 

eliminate material redundancy and enhance stiffness-to-

weight ratios [4]. In a case study on a steel truss bridge 

deck, Zhang et al. demonstrated that TO led to a 35% 

reduction in material weight while maintaining structural 

integrity, especially under dynamic loading scenarios [16]. 

Moreover, coupling TO with performance constraints such 

as buckling or fatigue further enhances its practical utility in 

real-world projects. 

 
[Fig.9: Illustration of Topology Optimization Process: 

(a) Initial Design Domain, (b) Material Distribution 

After Optimization, (c) Manufacturable Geometry] 

B. Shape Optimization and Geometric Refinement 

Shape optimization fine-tunes the external boundaries or 

internal surfaces of a structure to improve performance 

metrics such as stress concentration, deformation, or modal 

characteristics [11]. While topology optimization provides 

the coarse structural layout, shape optimization enables local 

refinements that enhance manufacturability, aesthetics, and 

mechanical efficiency. 

For instance, in the optimization of concrete shell roofs, 

shape optimization reduced the peak stress by 20% and 

deflections by 15% compared to initial geometries designed 

using engineering intuition [13]. Furthermore, free-form and 

compression-only forms derived through graphic statics or 

thrust network analysis can be optimized structurally using 

shape optimization algorithms. 

C. Integration with Additive Manufacturing and 

Performance Constraints 

Recent developments in additive manufacturing (AM) 

have opened new possibilities for directly fabricating 

structures with complex geometries derived from topology 

optimization [14]. This synergy allows structures to be 

fabricated as designed, overcoming traditional 

manufacturing constraints and unlocking new levels of 

efficiency. Furthermore, constraint-aware optimization, 

incorporating thermal, vibration, or sustainability metrics, 

broadens the impact of TO and shape optimization beyond 

pure structural performance. 
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Table-II: Comparative Summary of Topology and Shape Optimization Methods in Structural Mechanics 

Optimisation Type Objective Methodology 
Material Saving 

Potential 
Common Tools References 

Topology Optimization 
Minimize material or 

compliance 

SIMP, Level Set, 

Evolutionary 
High (30–50%) 

TOSCA, OptiStruct, 

OpenStruct 
[10] 

Shape Optimization 
Minimize stress, 

deformation, etc. 

Gradient-based, Adjoint 

methods 
Moderate (10–25%) 

ANSYS, COMSOL, 

Abaqus 
[11] 

TO with Performance 

Constraints 
Buckling, frequency, fatigue 

Multi-objective, constraint 

handling 
High (20–40%) 

CAIO, MATLAB, AM-

restricted tools 
[16] 

TO + Additive 

Manufacturing 

Manufacturable, complex 

geometries 
Lattice + solid mix High (30–50%) 

Netfabb, nTopology, 

Autodesk 
[14] 

 

D. Challenges and Opportunities 

Despite its potential, the practical application of topology 

and shape optimization in mainstream construction is still 

limited due to: 

i. High computational cost, especially in large-scale 

or multi-physics scenarios. 

ii. Gaps between optimized geometry and 

construction feasibility. 

iii. Limited knowledge transfer between research and 

industry practice. 

Nonetheless, with increasing computational power and 

tighter integration of optimisation tools into CAD/BIM 

environments, the adoption of topology optimisation (TO) 

and shape optimisation is expected to accelerate, particularly 

in projects aiming for sustainability through minimal 

material use. 

V. DIGITAL TWINS AND REAL-TIME STRUCTURAL 

SIMULATION 

The growing complexity of modern structures and the 

demand for material-efficient, sustainable designs have 

driven the development of advanced digital tools. Digital 

Twins (DTs)—virtual replicas of physical structures that are 

continuously updated with real-time data—offer a 

transformative paradigm in structural engineering by 

enabling adaptive, performance-driven decision-making 

throughout a building's lifecycle [18]. When combined with 

real-time structural simulation, DTs enable dynamic 

feedback, predictive analysis, and continuous optimisation 

of material use based on actual structural behaviour. 

A. The Concept and Architecture of Digital Twins in 

Structural Design 

Digital Twins extend traditional Building Information 

Modelling (BIM) by integrating sensor data, finite element 

models, and AI-based analytics to simulate, assess, and 

forecast structural performance under changing loads and 

environmental conditions [22]. A typical DT ecosystem 

comprises three core components: 

i. The physical structure, 

ii. The virtual model, and 

iii. A bidirectional data flow that updates the digital 

replica in real time. 

By continuously comparing measured and simulated 

behaviour, DTs provide insights into underutilized material 

capacity, thus informing retrofitting, load redistribution, or 

even adaptive structural control strategies [19]. Figure 11 

illustrates real-time sensor feedback, the data flow into a 

virtual model, and the real-time analysis used to guide 

maintenance or structural optimisation decisions. 

 
[Fig.10. Schematic of a Digital Twin for a Load-

Bearing Structure] 

B. Real-Time Structural Simulation for Load 

Optimization 

Real-time simulation involves the continuous updating of 

finite element (FE) or reduced-order models based on live 

input from sensors such as strain gauges, accelerometers, or 

load cells [50]. These simulations enable engineers to assess 

whether the existing material distribution is optimal and can 

highlight areas of overdesign or stress concentrations [8]. 

For instance, real-time FE analysis of a long-span bridge 

under dynamic traffic loads showed that the actual 

utilization of structural members was as low as 40% of their 

design capacity [20], signaling a significant opportunity for 

material reduction in future designs. 

Table-III. Comparison of Traditional vs. Digital Twin-Enabled Structural Modelling Approaches 

Aspect Traditional Design Digital Twin-Enabled Design Efficiency Gains References 

Structural Model Static, based on assumptions Real-time, adaptive, sensor-driven High (10–25% material saving potential) [20] 

Data Feedback One-time simulation Continuous monitoring and feedback Dynamic updates, predictive maintenance [21] 

Optimization Method Pre-construction only Continuous post-construction updates Full lifecycle optimization [19] 

Risk Management Conservative safety factors Condition-based decisions More targeted, less overdesigned [18] 

Computational Demand Low to moderate High, real-time processing required Requires cloud/edge computing [23] 

 

C. Integration with AI and Edge Computing 

With the rise of edge computing and machine learning, 

digital twins can now process data near the source and make 

autonomous decisions for load management, damage 

detection, or structural optimisation [23]. AI-enhanced DTs 

can detect anomalies in real-

time and trigger structural 

assessments, identify stress 

redistribution patterns, and 
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recommend retrofitting actions that enhance material 

utilisation. Moreover, digital twin-based control systems 

can influence adaptive structural elements, such as tuned 

mass dampers or shape memory alloys, to dynamically 

redistribute loads, thereby extending the service life of 

structures while minimising resource use [17]. 

D. Challenges and Future Directions 

Despite the promise of DTs in achieving material efficiency, 

several challenges remain: 

i. Data interoperability among various sensors and 

modelling platforms. 

ii. Computational scalability, particularly for large 

and complex structures. 

iii. Cybersecurity and data integrity in real-time 

systems. 

iv. Lack of standardized protocols for DT 

deployment in civil engineering projects. 

Future research should focus on standardising DT 

frameworks, integrating them with automated design and 

digital fabrication workflows, and exploring hybrid AI-

physics modelling to improve reliability and trustworthiness 

in decision-making. 

VI. MULTISCALE AND MULTIPHYSICS MODELING 

FOR STRUCTURAL EFFICIENCY 

The pursuit of material efficiency in structural design has 

led to significant advancements in modeling methods that 

span multiple scales (from microstructure to full-scale 

systems) and incorporate coupled physical phenomena. 

Multiscale modelling enables engineers to capture the 

influence of material behaviour at micro- and mesoscales on 

macroscopic structural performance, while multiphysics 

simulations account for the interactions between 

mechanical, thermal, moisture, and other environmental 

effects [26]. These approaches enable a more 

mechanistically informed design process, revealing areas of 

overdesign and facilitating more precise material 

deployment, particularly in composite structures, concrete, 

steel-concrete interfaces, and lightweight hybrids. 

 

A. Multiscale Modelling: From Microstructure to 

Structural Performance 

Multiscale frameworks typically integrate 

micromechanical simulations (e.g., representative volume 

elements – RVEs) with macroscale finite element models, 

enabling designers to predict how microstructural features 

like porosity, grain orientation, or fibre alignment influence 

strength, stiffness, and durability [29]. For instance, 

simulations of ultra-high-performance concrete (UHPC) 

incorporating fibre-matrix interactions at the microscale 

have demonstrated up to 20% reductions in conservative 

overdesign margins [27]. Figure 12 illustrates coupling 

between microstructural simulations and a global structural 

model with stress-strain transfer across scales [51]. 

 
[Fig.11: Multiscale Simulation of a Composite Beam 

with Microstructural RVE Integration] 

B. Multiphysics Modelling for Environmental and 

Operational Conditions 

Material efficiency is not only a function of mechanical 

loading but also of exposure to thermal gradients, moisture 

ingress, chemical attack, and dynamic interactions. 

Multiphysics modelling tools, such as COMSOL 

Multiphysics or Abaqus, coupled with user-defined 

subroutines, enable simultaneous consideration of these 

variables [33]. For example, thermal-mechanical simulations 

of steel-reinforced concrete under fire loading help identify 

regions where fireproofing can be minimized without 

compromising safety, thus saving material [28]. Similarly, 

hygrothermal analysis of timber structures under climate 

fluctuation allows for targeted reinforcement only where 

degradation is expected. 

Table-IV: Applications of Multiscale and Multiphysics Modeling in Material Optimization 

Modeling Strategy Application Context Material Efficiency Outcome References 

Multiscale (micro to macro) UHPC, fibre-reinforced composites Reduced conservative design factors (up to 20%) [27] 

Thermo-mechanical coupling Structural steel in fire Optimized fireproofing, reduced steel mass [28] 

Hygrothermal interaction Timber-concrete hybrid slabs Targeted material reinforcement [25] 

Chemo-mechanical degradation RC corrosion in coastal structures Life-cycle-based design for minimum cross-section [24] 

Acoustic-elastic coupling Vibration-sensitive footbridges Topology refinement for dynamic load paths [30] 

 

C. Coupling Multiscale and Multiphysics Domains 

Recent advances have led to the integration of multiscale 

and multiphysics models into unified frameworks. For 

instance, simulation platforms now enable concurrent 

modelling of microcracking, heat transfer, and moisture 

flow, especially in materials like concrete and masonry, 

which are highly heterogeneous and sensitive to 

environmental conditions [31]. Such coupled approaches 

help in spatially grading materials—e.g., using denser 

concrete only where needed or adjusting steel reinforcement 

in anticipation of localized degradation. Moreover, data-

driven multiscale models enhanced by machine learning can 

accelerate the identification of optimal microstructural 

patterns [32]. These hybrid methods open new frontiers in 

tailoring material layout according to real-world 

performance needs and constraints. 

D. Challenges and 

Research Frontiers 

Despite their potential, 

multiscale and multiphysics 
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models face several implementation challenges: 

i. High computational cost, especially for real-time 

or large-scale simulations. 

ii. Complex calibration and validation, requiring 

extensive experimental data across scales. 

iii. Lack of interoperability between commercial 

solvers for cross-domain simulations. 

Future work should focus on developing reduced-order 

modelling (ROM) techniques and establishing standardised 

modelling workflows to make these tools more accessible to 

design engineers. Furthermore, integrating these models 

with digital twins and real-time monitoring systems will 

enable adaptive and lifecycle-aware material efficiency 

strategies. 

VII. INTEGRATION WITH PARAMETRIC AND 

GENERATIVE DESIGN WORKFLOWS 

The convergence of computational mechanics with 

parametric and generative design has opened unprecedented 

opportunities for enhancing material efficiency through 

geometry-driven performance optimization. Parametric 

modeling allows designers to define and manipulate 

geometric parameters, while generative design leverages 

algorithmic exploration to find optimal solutions based on 

objectives like minimal material use, load capacity, and 

constructability [40]. When integrated with structural and 

computational simulations, these workflows empower a 

performance-based design ethos that minimizes structural 

redundancy. 

A. Parametric Modelling as a Platform for Structural 

Exploration 

Parametric design tools such as Rhino + Grasshopper, 

coupled with plugins like Karamba3D and Millipede, enable 

real-time feedback on structural performance during the 

early design phase. These tools allow quick iterations and 

visualisation of stress distributions, form-finding, and load 

paths across hundreds of design variants. Figure 13 

illustrates a parametric truss model whose geometry 

responds to load and support changes, demonstrating the 

ability to tune mass distribution and optimize member 

placement [37]. 

 

 
[Fig.12: Parametric Truss Optimization Using 

Grasshopper and Karamba3D] 

B. Generative Design Algorithms and Material 

Economy 

Generative design employs optimization algorithms—e.g., 

genetic algorithms, simulated annealing, and gradient 

descent—to automatically evolve structures toward 

objectives like mass minimization, buckling resistance, or 

energy dissipation [34]. These workflows often link 

parametric models with FEA solvers, iteratively refining 

form and topology. 

Studies on generative frameworks for high-rise buildings 

have shown up to 35% material savings compared to 

traditional member sizing approaches, particularly when 

constraints such as deflection, load path redundancy, and 

seismic criteria are incorporated [36]. 

Table-V: Generative Design Applications in Structural Material Optimization 

Design Method Application Material Savings Tools/Frameworks Used References 

Genetic algorithm (GA) Truss bridge optimization 20–30% MATLAB, Grasshopper, Karamba3D [35] 

Topology + parametric hybrid Concrete shell structures 25–40% Rhino, Millipede, SOFiSTiK [41] 

Multi-objective GA High-rise building core layouts 35% Dynamo, Revit, FEM software [36] 

Evolutionary form-finding Stadium roofs 20% Kangaroo, Grasshopper, Oasys GSA [38] 

 

C. Feedback Loops between Simulation and Design 

Material efficiency improves further when parametric 

design environments are tightly coupled with real-time 

structural simulation engines, allowing for adaptive 

feedback loops. Such feedback loops enable stress-driven 

geometry modification, which can trigger the recalibration 

of section properties, local material distribution, or even the 

selection of a structural system. 

For instance, form-finding algorithms can optimize tension 

or compression-only structures, minimizing materials in 

tension zones of cable nets or compression arches [39]. 

Recent workflows also incorporate constraint-based 

machine learning that learns from past simulations to reduce 

the need for thousands of design iterations [2]. 

D. Challenges and Opportunities 

Despite the promise of generative workflows, the 

integration of structural mechanics constraints into 

parametric and generative environments remains a 

challenge: 

i. Many generative tools lack built-in support for 

nonlinear analysis, large deformation, or time-

dependent phenomena. 

ii. Computational cost can become prohibitive as the 

number of variables increases, especially when 

considering real-world constraints such as 

fabrication tolerances or sustainability metrics. 

Future research must address these challenges by: 

i. Embedding reduced-order simulation models into 

generative design platforms. 

ii. Expanding libraries of performance-aware 

geometric operators. 

iii. Integrating life-cycle 

assessment (LCA) to 

guide not only 

material quantity but 

https://doi.org/10.35940/ijies.G1106.12060625
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also embodied carbon reduction in the design 

process. 

VIII. CASE STUDIES AND REAL-WORLD 

APPLICATIONS OF MATERIAL-EFFICIENT 

DESIGN 

While theoretical advancements in computational 

mechanics and design optimisation have shown great 

promise, real-world applications of these methods are 

crucial for validating their material-saving potential. Recent 

years have seen the emergence of building-scale projects 

that integrate advanced simulation, topology optimisation, 

and parametric workflows into actual construction 

processes, resulting in significant reductions in material 

consumption, cost, and environmental impact. 

A. High-Rise Structures with Optimization-Driven Core 

Systems 

One of the most compelling demonstrations of material 

efficiency at scale is the AIA Tower in San Francisco, where 

optimization of the building’s central core wall and 

outrigger systems led to a 15% reduction in concrete and a 

10% decrease in rebar consumption [42]. This was achieved 

through iterative FEA-based design refinements using 

performance objectives such as drift control, stress 

minimization, and buckling resistance under wind and 

seismic loads [52]. Figure 14 illustrates a visualisation of the 

generatively optimised shear wall layout in comparison to a 

conventional design baseline. 

 
[Fig.13: Optimized vs. Conventional Core Layout in a 

High-Rise Building] 

B. Adaptive Structures and Lightweight Roofs 

Projects such as the Allianz Arena Roof (Germany) and 

Heydar Aliyev Centre (Azerbaijan) illustrate how 

computational form-finding and generative mesh 

optimisation enabled lightweight structural skins with 

efficient load paths and minimal material thickness. These 

projects utilised tension and membrane structures shaped 

using nonlinear form-finding algorithms, which significantly 

reduced structural mass. A comparison of real-world savings 

in such landmark structures is presented in Table 6. 

 

Table-VI: Material Efficiency Achieved in Select Real-World Projects 

Project Design Strategy Material Saved Tools Used References 

Allianz Arena Roof, Germany Form-finding for membrane tension systems 18% steel weight Sofistik, Rhino/Karamba [39] 

AIA Tower, USA FEA + generative core optimization 15% concrete ETABS, Grasshopper, MATLAB [42] 

Heydar Aliyev Centre, Azerbaijan Mesh optimization + adaptive curvature 25% steel shell Rhino + T-Splines, FEA plugins [44] 

ETH NEST HiLo Roof, Switzerland Topology + shell optimization 40% concrete Rhino + Karamba + FEM [43] 

 

C. Digital Fabrication and Material-Efficient Prototypes 

The ETH NEST HiLo Pavilion in Switzerland exemplifies 

how advanced structural modelling, combined with digital 

fabrication, can result in highly efficient building 

components. The roof shell, designed using thrust-network 

analysis and nonlinear finite element modelling, achieved a 

70% reduction in formwork volume and 40% material 

savings compared to flat slab equivalents [43]. Prefabricated 

formwork panels were robotically milled based on the 

optimized geometry. This approach also demonstrated the 

potential of data-rich feedback loops during fabrication, 

minimizing construction tolerances and enhancing load 

alignment. 

D. Lessons from Implementation 

Although successful, these case studies also reveal common 

barriers: 

i. High computational demand and need for multi-

disciplinary collaboration. 

ii. Limited industry standardization for integrating 

optimization workflows into BIM environments. 

iii. Constructability constraints were optimized to 

face fabrication limitations. 

However, emerging techniques like hybrid simulation–

fabrication environments, cloud-based FEA, and automated 

constraint-based modelling are making these strategies 

increasingly scalable for widespread use [2]. 

In conclusion, these real-world projects demonstrate that 

material savings of 15–40% are consistently achievable 

across various structural types, including shells, towers, and 

lightweight roofs, when advanced modelling and simulation 

techniques are implemented holistically. They emphasise the 

importance of early integration of mechanics-informed 

design strategies, interdisciplinary collaboration, and 

readiness for digital fabrication. 

IX. FUTURE DIRECTIONS AND RESEARCH 

OPPORTUNITIES 

As the global construction sector seeks pathways to reduce 

embodied carbon, resource consumption, and material 

waste, the convergence of computational mechanics, 

optimization, and digital design workflows opens promising 

avenues for further advancement. This section identifies key 

directions where research and practice must evolve to 

unlock the full potential of mechanics-driven material 

efficiency in building design. 

A. Integration of Machine 

Learning in Structural 

Mechanics 

https://doi.org/10.35940/ijies.G1106.12060625
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The use of machine learning (ML) in structural modelling 

is still in its infancy. Recent studies have demonstrated that 

surrogate models trained on finite element datasets can 

significantly reduce simulation time while maintaining 

accuracy [46]. ML can support: 

i. Predictive modeling of stress–strain responses 

across multiscale materials. 

ii. Real-time simulation in digital twins [23]. 

iii. Automated detection of optimal design regions in 

topology optimization. 

However, the black-box nature of many models raises 

concerns regarding robustness and verification. Future 

research must address explainability and integration with 

established mechanics principles. 

B. Automation of Constraint-Based Design Exploration 

Most optimisation frameworks still require expert-defined 

constraints, which limit design flexibility. Emerging 

platforms such as Autodesk Forma, TestFit, and Spacemaker 

AI are working toward automated rule generation based on 

programmatic and structural needs. For structural engineers, 

this calls for the development of: 

i. Domain-specific constraint libraries. 

ii. Interactive generative interfaces with embedded 

structural feedback [48]. 

iii. Seamless integration with building codes and 

safety margins. 

C. Bio-Inspired and Functionally Graded Designs 

Drawing inspiration from biological systems, such as bone 

structures and plant stems, functionally graded materials 

(FGMs) and morphogenetic design strategies provide novel 

approaches to distribute materials efficiently. The challenge 

remains in translating these ideas into practical construction 

through: 

i. Novel materials (e.g., fibre-reinforced concrete, 

printed lattices). 

ii. Adaptive meshing and stress field–driven grading 

[47]. 

iii. Hybrid additive–subtractive manufacturing for 

large-scale deployment. 

D. Standardization and Interoperability of Tools 

A significant bottleneck is the lack of interoperability 

between simulation, modelling, and fabrication tools. 

Projects like Speckle, IFC 5.0, and Open CDE aim to bridge 

this gap. Key areas for development include: 

i. Unified data formats for optimized geometries and 

FEA results. 

ii. Modular simulation environments linking 

parametric tools with nonlinear solvers. 

iii. Digital QA/QC pipelines for verifying 

performance-based design. 

E. Circular Design and Reuse Optimization 

Future frameworks should not only optimize new 

materials but also integrate strategies for reuse and 

circularity. Optimization algorithms can be extended to: 

i. Identify structural reuse opportunities for existing 

components [49]. 

ii. Integrate carbon and reuse metrics into the 

objective function. 

iii. Enable generative re-design using available 

salvaged elements. 

Figure 15 illustrates a conceptual workflow for reuse-

optimised structural design. 

 

 
[Fig.14: Workflow for Circular and Reuse-Driven 

Structural Optimization] 

F. Summary of Future Research Opportunities 

Table 7 consolidates the identified opportunities, required 

innovations, and potential impact for each research 

direction. 

Table-VII: Emerging Research Directions for Material-Efficient Structural Design 

Research Area Required Innovations Expected Impact References 

ML-Enhanced Simulation Surrogate FEA, physics-informed ML Real-time feedback, design iteration acceleration [23] 

Automated Constraint Generation Parametric rule engines, code-aware models Broader adoption in early-stage design [48] 

Bio-Inspired and FG Design 
Gradient modelling, mesh adaptation, and hybrid 

materials 
Ultra-efficient forms, adaptive performance [47] 

Tool Interoperability Open APIs, IFC integration, real-time data links Multi-disciplinary workflows [44] 

Structural Reuse Optimization Salvage inventory modelling, reuse-oriented topology Circular economy in structural systems [49] 

 

X. CONCLUSION 

The journey toward material efficiency through mechanics 

is not just a technical challenge—it also requires a cultural 

shift toward performance-based, data-driven, and circular 

construction paradigms. By embracing multiscale 

modelling, generative algorithms, and interdisciplinary 

collaboration, structural engineers and architects can lead 

the transformation toward sustainable, intelligent structures 

of the future. 
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