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Thermoelastic Effects on Some Hollow Structures 

Ashwini Kulkarni, R. N. Pakade, Lalsingh Khalsa 

Abstract: In this paper, an attempt has been made to solve 

inverse problems of thermoelasticity of a finite length hollow 

cylinder occupying the space D : α ≤ r ≤ b, -h ≤ z ≤ h. Marchi-

Fasulo transform and Hankel transform techniques are used to 

obtain the general solution for the set of boundary value 

problems. Particular types of boundary conditions have been 

taken to illustrate the utility of the approach. The transformed 

components of the stresses and temperature distribution have 

been obtained. A numerical inversion technique is employed to 

invert the integral transform, and the resulting quantities are 

presented graphically. Key words: Hollow cylinder, 

Thermoelastic problem, March 

       Keywords: Hollow cylinder, Thermoelastic problem, 

Marchi- Fasulo and Hankel transform techniques.  

I. INTRODUCTION 

   Most materials tend to expand if their temperature 

rises and, to a first approximation, the expansion and 

compression is proportional to the temperature change. This 

temperature changes induced by expansion and compression 

is based on Thermoelasticity, which is a branch of applied 

Mathematics, which specially deals with the study of 

temperature changes and coupling between mechanical 

deformation and thermal energy calculated in terms of 

stress. Therefore, a number of theoretical studies concerning 

them have been reported so far. However, to simplify the 

analyses, almost all the studies were conducted on the 

assumption that the upper and lower surfaces of the thin 

discs or circular are insulated or heat is dissipated with 

uniform heat transfer coefficients throughout the surfaces. 

For example, Nowacki, W. [42] has determined steady-state 

thermal stresses in a thick circular plate subjected to an axis 

symmetric temperature distribution on the upper face with 

zero temperature on the lower face and circular edge. 

Ishihara et al. [23] has considered a circular plate and 

discussed the transient thermoelastic-plastic bending 

problem, making use of the strain increment theorem. In all 

afore mentioned investigations an axis symmetrically heated 

plate has been considered. Similar studies were also 

conducted for thick objects. For Example, Nasser, M.EI-

Maghraby [39-40] investigated problems due to heat sources 

in generalized thermoelastic body. Kulkarni, V.S. and 

Deshmukh K.C. [28] has investigated their research on disc 

for determining quasi-static thermal stresses in a thick 

annular disc and circular plates subjected to arbitrary initial 

temperature on the upper face with lower face atzero. 
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II. STATEMENT OF THE PROBLEM  

Consider thick circular plate of thickness 2 h  occupying 

the space ,,0: hzharD 
 

the material is 

homogenous and isotropic. The differential equation 

governing the displacement potential function ),,( tzr  

as Nowacki [47] is  
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where   and ta  are Poisson’s ratio and linear 

coefficient of thermal expansion of the material of the plate 

and T  is the temperature of the plate satisfying the 

differential equation as Noda [41] is 
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Subject to initial condition and boundary conditions 
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where k is thermal diffusivity of material of the plate. 

     The displacement function in the cylindrical coordinate 

system are represented by Love’s function as   
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The Love’s function must satisfy  
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The component of stresses are represented by the 

thermoelastic displacement potential 
 

and Love’s 

function L  as Noda [41] are 
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For traction free surface stress function  

0   rz  at hz   for thick plate.  (16) 

Equations to constitute the mathematical formulation of the problem under consideration. 

 
Figure 1: Shows the Geometry of the Problem 
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III. SOLUTION OF THE PROBLEM 

Applying Hankel transform defined to the equation, we get  
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Again applying Marchi-Fasulo transform defined in to above equation, we obtain 
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Equation is a linear equation whose solution is given by  
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Using (3), we get   
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Applying inversion of Marchi-Fasulo transform and Hankel transform to the differential equation, we get   
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This is the desired solution of the given problem. Let us assume Love’s function L, which satisfy condition as   
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 we get displacement potential  as  
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IV. DETERMINATION OF DISPLACEMENT FUNCTION 

Substituting, we get 
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Substituting in above equations, we obtain 
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V. SPECIAL CASE 
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Using equation, one obtains 

 

 

 








 


t

n
tkptkp

n

n

m n m

m dtee
zP

aJ

rJ

a
tzrT

0

1

2

1

0
2

22)(

)(

)(2
),,(




 

















 )(

2
)(

)4(
)( 02

2

13

22

1 m

m

m

m

m
m

m

aJ
a

aJ
aa

aJ
a











 

VI. NUMERICAL RESULTS 
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As an illustration, we carried out numerical calculations for 

a thick circular plate made up of aluminum metal (refer 

Table 1 for parameter) and examine the thermoelastic 

behavior in the state for temperature distribution, 

displacement and thermal stresses in radial and axial 

direction. 

Table 1: Thermal Material Properties 

Materials 

S
y

m
b
o
l 

K Cp
       E  

  

Btu/ hr ft0 F Btu/ lb 0 F lb/ ft3 ft2/ hr 

1/F 

(X 10-6) 

GPa  

Aluminum Al 117 0.208 169 3.33 12.84 70 0.35 

Copper Cu 224 0.091 558 4.42 9.3 117 0.36 

Iron Fe 36 0.104 491 0.70 6.7 193 0.21 

Silver Ag 242 0.056 655 6.60 10.7 83 0.37 

 

 

 



International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-4 Issue-4, November 2016  

28 

Published By: 

Blue Eyes Intelligence Engineering  
& Sciences Publication  

Retrieval Number: D0713114416/2016©BEIESP 

Figure 2 shows that the variation of temperature 

distribution along axial direction, it is clear that temperature 

decreases initially at time t = 0.25, 0.50, 0.75, 1.00 and 

slightly increasing at z = 2.5, the curve behaves like a 

sinusoidal type. But due to the ax symmetric internal heating 

at t = 0.5 temperature decreases upto zero at z = 3. 

 
Figure 2. Temperature Distribution Along Axial 

Direction 

 

Figure 3. Displacement Along Axial Direction 

 In figure 3 depicts the variation of displacement uz along 

axial direction, it is clear that radial displacement decreases 

initially at time t = 0.25, 0.50, 0.75, 1.00 and slightly 

increasing at z = 2.5 and attain peak value for z = 3, again 

the curve behaves like a sinusoidal type. But due to the axis 

symmetric internal heating at t = 0.5 displacement decreases 

upto zero at z = 3.  

 

Figure 4. Radial Stresses Along Axial Direction 

In figure 4 displays the variation of radial stresses along 

axial direction at different values of time, it is clear that 

radial stresses initially decreases at time t = 0.25, 0.50, 0.75, 

1.00 and the start increasing at z = 2.5 and attain peak value 

for z = 3, again the curve behaves like a sinusoidal type. But 

due to the axis symmetric internal heating at t = 0.5 

temperature decreases upto zero at z = 3. It is also observed 

that the Axial stresses zz and the Shear Stresses rz along 

axial direction for different values of time were found 

similar to that of Radial stresses rr and Tangential stresses 

  along axial direction with only slight change in the 

magnitude.  

 
Figure 5. Tangential stresses along axial direction    

VII. CONCLUSION  

The temperature distribution, displacement and thermal 

stresses of thick circular plate are investigated with known 

boundary conditions. Finite integral transform techniques 

are used to obtain numerical results. Any particular cases of 

special interest can be assigned to the parameters and 

functions in expressions. The temperature, displacement and 

thermal stresses that are obtained can be useful to the design 

of structure or machines in engineering applications.  
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