
International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-3 Issue-9, August 2015 

32 

Published By: 

Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: I0663083915/2015©BEIESP 

Survey of Imperative and Object Oriented Quantum 

Computer Programming Languages 

Vivek Kumar, Anuranjan Misra  

Abstract - In the academic world a variety of languages are 

studied and used. But with the exception of a few applications, 

most languages utilized for commercial applications are written 

in imperative and object oriented languages. A partial list of 

these languages includes many that would be familiar to any 

commercial developer: Visual Basic, C#, Java, Python, Fortran, 

Cobol, and so on. For the power of a quantum computer to be 

utilized economically in commercial applications, the 

programming must be easy for existing commercial developers to 

learn and utilize. This is best done by piggy backing off of the 

languages and techniques they are already familiar with- this 

means that successful quantum languages for existing 

commercial developers will likely be related to one of more of 

these languages, or quantum frameworks (libraries) for these 

languages. It should be pointed out that the popularity of 

languages changes with time, so as new languages come into 

popularity their potential for quantum computing also needs to 

be kept in mind. Many of today’s popular languages were not 

designed to easily take advantages of multiple cores or 

processors. Consequently it is quite feasible that other languages 

that take advantage of these parallel processing capabilities will 

rise in popularity in the near future and be excellent candidates 

extending to carry out quantum computing. 

     Keywords:- C#, Java, Python, Fortran, Cobol, Visual Basic, 

libraries 

I. INTRODUCTION 

Quantum computers have the potential for solving certain 

types of problems much faster than classical computers. 

Speed and efficiency are gained because quantum bits can 

be placed in superposition’s of one and zero, as opposed to 

classical bits, which are either one or zero. Moreover, the 

logic behind the coherent nature of quantum information 

processing often deviates from intuitive reasoning, leading 

to some surprising effects. 

II. DIFFERENT APPROACH (S) 

The structure of quantum programming languages 

differs from existing classical languages in that the 

limitation must be enforced. Depending on the proposed 

approach, defiance of these limitations may be caught at 

compile time or at run time. The quantum languages 

typically include statements for initializing the quantum 

state of the system, manipulating it through (unary) 

operations, and finally measurement. When Knill’s QRAM 

approach is utilized these are frequently additions to some 

existing classical programming techniques. 

 
 

 

 

 

Revised Version Manuscript Received on August 20, 2015. 
  Mr. Vivek Kumar, M.Tech Student, Department of Electronics and 
Communication, Noida International University, Delhi National Capital 

Region Noida, India.  
  Dr. Anuranjan Misra, Professor & Head, Department of Computer 

Science and Engineering, Noida International University, Delhi National 

Capital Region Noida, India. 

(a) Knill Approach 

Knill has introduced pseudo code conventions. His pseudo 

code is based on imperative program techniques, as it 

utilizes variables and flow control statements based on that 

methodology. Within his paper he also provides several 

elementary examples of the use of his proposed pseudo 

code. As mentioned previously, the importance of Knill’s 

paper lies not necessarily in the proposed pseudo code 

conventions, but in the use of his quantum random access 

machine model (QRAM). While Knill’s work is an 

important step forward, pseudo code it has little use for 

writing actual applications. Even though, it is a step in the 

right direction. 

 
Figure1. Measured Fourier transform utilizing Knill’s 

pseudo code  

(b) Sanders and Zuliani Approach 

Sanders and Zuliani developed the programming 

language qGCL as a means to express quantum algorithms. 

The primary purpose of the language is for program 

derivation, correctness of proof, and teaching. As the 

authors point out, qGCL does not aim to do numerical 

simulations of quantum algorithms like Omer's QCL, which 

will be covered later. Within the paper they first describe a 

probabilistic extension to Dijsktra’s guarded command 

language (GCL), which they appropriately call pGCL. They 

then extend pGCL to invoke quantum procedures and call 

the resulting language qGCL.  

 

 

 



 

Survey of Imperative and Object Oriented Quantum Computer Programming Languages 

33 

Published By: 

Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: I0663083915/2015©BEIESP 

Thus qGCL is like many other proposed quantum 

programming techniques where the computation is 

controlled by a classical computer utilizing a quantum sub 

system. The three quantum procedures they outline and 

place emphasis on are fundamental to any system carrying 

out quantum computation: initialization, evolution, and 

finalization (or observation). They also provide 

implementations of several quantum algorithms, including 

Shor’s  and Grover’s. Since GCL was proposed in 1975, and 

qGCL is an augmentation to it, qGCL may be too limited 

and dated to construct commercial applications. Like Knill’s 

pseudo code, qGCL also suffers from a very mathematical 

syntax- something that is harder for commercial 

programmers to understand and even type. As the authors 

point out though, this simplicity makes it an effective tool 

for teaching the basics of quantum programming. 

 

 
Figure 2. Shor’s algorithm in Sanders and Zuliani’s q 

GCL [51] 

(c) Bettelli Approach 

Bettelli has developed a preliminary extension for C++, 

in the form of a library, for quantum computer 

programming. This library exposes several classes that can 

be utilized for quantum computation. The use of classes 

provides the important benefit of encapsulating the workings 

of the library and hiding them from users. Furthermore, 

unlike some procedural implementations, rules can be better 

enforced and valid states maintained through the use of 

classes. Bettelli’s implementation also generates quantum 

operations, and these byte codes could be piped to an actual 

quantum sub system or a simulator. While the library is in a 

preliminary form, Bettelli’s paper also contains a list of 

features desirable for a scalable quantum programming 

language. One of the most important of these points is that a 

quantum programming language should be an extension of a 

classical language. Extensions can take a variety of forms: 

class libraries, dynamically linked libraries, and assemblies 

to name a few. Not only does extending a classical language 

make it easier for existing programmers to utilize quantum 

features, but it also helps to keep the library useful as the 

language surrounding it evolves to tackle classical problems. 

Thus the author of the quantum extention can focus on 

tackling only those issues that apply to quantum computing 

instead of all issues as must be done with a proprietary 

language. It is important to note that some languages, such 

as Python, are evolving iteratively through open source 

methods as opposed to large standards developed over a 

period of years as is the case with C and C++. C++ was 

developed in 1984, but the standard was not approved until 

1998 enough time for processors to double in speed seven 

times in accordance with Moore’s law. Additionally, there 

have been over 8,500 programming languages developed, 

yet only a select few of these are actually used in industry- 

further strengthening the argument for creating extensions of 

existing languages instead of new languages. Bettelli’s work 

is the most useful to existing programmers because C++ is a 

widely used language and only the library needs to be 

learned, not an entire new language. As new languages are 

developed and speed and efficiency of a language are not as 

important due to increased computing power, C++ seems to 

be declining in popularity. 

 

 
Figure 1. Grover’s algorithm in Bettelli’s C++ extension 

[32] 
Over a period of six years, 1998 – 2004, Omer has 

developed what is arguably the most complete quantum 

programming language to date: Quantum Computation 

Language, or QCL. QCL is a language that has a structure 

similar to C, making it easy to learn for many programmers 

because C and its decedents such as C++, C#, and Java are 

popular languages. However this strength of basing QCL on 

C is also part of its downfall. C is still used for low level 

applications such as drivers, but not for cutting edge 

commercial software. As a result, QCL does not have many 

of the features available in modern languages. By being a 

proprietary language QCL would be difficult to adopt in the 

real world for many programmers writing applications since 

it does not have the power and libraries available to modern 

languages. Omer has also created a complete simulator for 

QCL programs, including an interpreter. Having an 

interpreter for QCL allows for students of the language to 

create and see how code behaves in real time. In a benefit to 

all studying quantum computing, Omer has also made the 

source code of the interpreter 

available.  

 



International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-3 Issue-9, August 2015 

34 

Published By: 

Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: I0663083915/2015©BEIESP 

While the inclusion of the interpreter and source code 

makes QCL useful, the fact that it is a new language does 

present an obstacle to those wishing to learn quantum 

computer programming. As with all new languages, it also 

makes it harder to integrate quantum algorithms into 

existing code bases.   

 

 
Figure4. Deutsch’s algorithm expressed in Omer’s QCL 

[58] 

(d) Blaha Approach 

Blaha has introduced a quantum assembly language and 

quantum C language. In his two language proposals the 

languages themselves are algebraic in nature, which he 

argues allows for better understanding of the language and 

proof of correctness if necessary. Within Blaha’s work 

however, less than one page is dedicated to his quantum C 

language, and most of that involves an explanation of 

pointers in C. So while he proposes a quantum C language, 

there isn’t much of an explanation of how it works other 

than defining the algebraic representation of the pointer 

operations. It is also interesting to note that Blaha was able 

to obtain trademarks for what would seem to be generic 

terms in the field of quantum computing, including 

“Probabilistic Grammar”, “Quantum Grammar”, and 

“Quantum Assembly Language”. Like Bettelli’s work, 

Blaha’s use of C makes the approach very viable. However, 

without further details it is hard to gauge how easy it is to 

actually use. 

(e) Markus  Approach 

Markus has devised a method to simulate quantum 

computing using Fortran. While not a true language or 

framework in itself, it is worth noting because it is an 

example of how such a library would work. Currently any 

quantum computing language or library must simulate the 

quantum system since quantum computers are currently 

unavailable for use in programming. Many languages are 

derived from Fortran, so Markus’s paper gives a good 

insight on how to actually accomplish that for a variety of 

languages. Included in the paper is the full source code 

listing for the simulation, along with debugging statements. 

It is also notable that Fortran has been used as a parallel 

programming language in the Fortran-K implementation, 

which is a subset of Fortran-90. Nonetheless, more modern 

languages such as Fotress could also be used to simulate 

quantum computing and be more accessible. Providing the 

source code is invaluable for others developing quantum 

libraries as it provides a source of solutions for problems 

that may arise during implementation, and this is a benefit of 

the work Markus has done. 

(f) Carini Approach 

Carini has developed a method to simulate qubits using 

the programming language Ruby. Like Markus’s Fortran 

simulation, even though it is not a language or framework it 

is noteworthy due to the implementation techniques. 

Carini’s implementation involves simulating the states of a 

qubit on separate threads, although she admittedly ran into 

some scheduling issues. This is another important insight for 

the simulator of any proposed language or framework- the 

simulation should take advantage of today’s multiprocessor 

systems. Doing so increases efficiency of the simulation, but 

presents challenges of its own through the need to 

implement parallel processing techniques. In particular this 

presents a problem for any framework or language built 

upon the Python programming language due to the global 

interpreter lock. While Python is a concise and easy to 

program in language, only one thread within a process can 

access Python objects at a time . This means that even with a 

multiprocessor system, multithreaded Python programs 

cannot take full advantage of it as they effectively use one 

processsor. The work around for this is to implement 

multiple processes within Python instead of multiple 

threads. Even with this difficulty Python is still a good 

candidate for building a quantum computing framework on. 

Python is platform independent, like Java, so it eliminates 

the need to port to different systems. Unlike Java though,  

 

 



 

Survey of Imperative and Object Oriented Quantum Computer Programming Languages 

35 

Published By: 

Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: I0663083915/2015©BEIESP 

it is an interpreted language, which allows for one to 

dynamically interact with the system like Omer’s QCL. 

(g) Svore Approach 

Svore and colleagues have developed a suite of tools for 

use in quantum computation . These tools include a 

language, compiler, optimizer, simulator, and layout tools. 

A key feature to the language, as others have pointed out as 

necessary, is that it is machine independent. For practical 

purposes quantum computers are not yet a reality, so any 

proposal for programming them must be independent of 

whatever solution is used to realize them. Within their paper 

they also propose translating their high level language into a 

quantum intermediate language (QIR) which then gets 

translated into a quantum assembly language (QASM), and 

finally a physical language (QCPOL). This is approach is 

the similar to many modern day classical languages. As with 

many other quantum programming proposals, this one also 

makes use of Knill’s QRAM model.  Another key to the 

proposal is that quantum error correction be implemented on 

a lower level and not within the higher level language itself. 

This higher level abstraction is akin to how modern day 

programmers are not concerned with error correction within 

RAM or through a network connection. While the purpose 

of the various languages and transitions between them are 

described, the work does not actually include specifications 

for the languages themselves. As such, the languages 

themselves remain an open problem as is pointed out at the 

end of the paper as an important challenge.  

 (h) Tucci Approach 

Tucci has developed quantum compiler that compiles 

steps of an algorithm into a sequence of elementary 

operations . The implementation of his compiler proposal is 

called “Qubiter”, for which he has made the source code in 

C++ freely available. While still in a basic state as he admits 

and lacking a GUI it is still a valuable learning tool because 

the source code is available.  Notable about his compiler is 

that it will also perform optimizations. These insights he 

provides on optimization would be useful for any other 

quantum programming system in order to increase 

efficiency. Tucci also received a patent for the ideas that 

Qubiter represent in 2002 . 

 

 
Figure 2. Output of Tucci’s Qubitter for the input 4 bit 

Hadamard matrix, which is also known as Hardamard-

Walsh transform.  

 

III. CONCLUSION 

While there has been a small variety of quantum 

computing programming proposals utilizing the imperative 

or object oriented approach, none of them is equivalent to or 

utilizes the more wide spread modern programming 

languages such as C#, Visual Basic, Java, or Python. The 

lack of a quantum computing framework for any of these 

languages makes quantum computer programming less 

accessible to the average commercial developer. Just as 

important, usability has also been neglected. So while the 

languages and libraries presented could be used, the fact that 

they are not similar to or use modern languages represents a 

significant hurdle to their use by practicing commercial 

developers. The fact that modern languages are not utilized 

for quantum computer programming and usability has been 

largely ignored represents an excellent candidate for work in 

the field of quantum computer programming. 

REFERENCES 

1. T. J. Bergin, "A History of the History of Programming Languages," 
Communications. ACM, vol. 50, p. 5, May 2007 2007. 

2. E. Knill, "Conventions for Quantum Pseudocode," Los Alamos 
National Laboratory LAUR-96-2724, 1996. 

3. D. Deutsch, "Quantum theory, the Church-Turing principle and the 

universal quantum computer," Proceedings of the Royal Society of 
London, vol. A, pp. 97-117, 1985. 

4. G. Fairbanks, D. Garlan, and W. Scherlis, "Design fragments make 

using frameworks easier," in Proceedings of the 21st annual ACM 
SIGPLAN conference on Object-oriented programming systems, 

languages, and applications Portland, Oregon, USA: ACM, 2006. 

5. W. E. Halal, "Technology’s Promise: Expert Knowledge on the 
Transformation of Business and Society," 2007. 

6. P. Strathern, The Big Idea: Turing and the Computer, 1 ed. New 

York, NY: Doubleday, 1997. 

7. Turing, "On Computable Numbers, with an Application to Entscheid-

ungsproblem," Proc. London Math Society, vol. 42, pp. 230-265, 

1936. 
8. Burda, Introduction to Quantum Computation, 1 ed. Boca Raton, FL: 

Universal Publishers, 2005. 

9. M. Hivensalo, Quantum Computing, 2 ed. Berlin: Springer, 2004. 
10. E. W. Dijkstra, "Guarded commands, nondeterminacy and formal 

derivation of programs," Commun. ACM, vol. 18, pp. 453-457, 1975. 

11. B. Cannon, "Guido, Some Guys, and a Mailing List: How Python is 
Developed." vol. 2007: Python.org, 2007. 

12. R. W. Sebesta, Concepts of Programming Languages, 5 ed. Boston, 

MA: Addison-Wesley, 2002. 
13. NCITS, "International Standard 14882 - Programming Language 

C++." vol. 2007: International Committe for Information Technology 

Standards, 1998. 
14. B. Omer, "A Procedural Formalism for Quantum Computing," in 

Theoretical Physics. vol. Masters Vienna: Technical University of 

Viena, 1998, p. 93. 
15. B. Omer, "Procedural Quantum Programming," AIP Conference 

Proceedings, vol. 627, pp. 276-285, 2001. 

16. B. Omer, "Structured Quantum Programming," in Information 
Systems. vol. Ph.D. Vienna: Technical University of Vienna, 2003, p. 

130. 

17. B. Omer, "Classical Concepts in Quantum Programming," Internation 
Journal of Theoretical Physics, vol. 44, pp. 943-955, July 2005 2004. 

18. B. Omer, "QCL - A Programming Language for Quantum Computers: 

Source and Binaries," 0.6.3 ed. vol. 2007: Omer, Bernhard, 2006, p. 
Source and binary downloads of the QCL interpreter. 

19. S. Blaha, "Quantum Computers and Quantum Computer Languages: 

Quantum Assembly Language and Quantum C Language," in Cosmos 
and Consciousness, 1 ed: Janus Associates Inc., 2002, p. 292. 

 

 


