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I. INTRODUCTION 

The fundamental theorem of linear programming which 

states that if the given linear programming problem has an 

optimal solution, then at least one basic feasible solution 

must be optimal forms a firm base for the solution of L.P. 

problem. According to this theorem we can search the 

optimal solution among the basic feasible solutions only 

which are finite in number. Also it is easy to find an optimal 

among the basic feasibles than to find that among all the 

feasible solutions which may be infinite in number. In this 

way a L.P. problem can be solved by enumerating all the 

B.F. solutions. But it is not an easy job to enumerate all the 

B.F. solutions even for small values of m (number of 

constraints) and n (no. of variables). To overcome this 

difficulty a method known as Simplex Method (or Simplex 

Algorithm) was developed by  George Dantzig in 1947 

which was made available in 1951. This method is an 

iterative  procedure in which we proceed in systematic steps 

from an initial B.F. solution to other B.F. solutions and 

finally, in a finite number of steps, to an optimal B.F. 

solution, in such a way that the value of the objective 

function at each iteration is better (or at least no worse) than 

at the  preceding step.  

II. SIMPLEX METHOD FOR PROBLEMS IN 

FEASIBLE CANONICAL FORM 

The Simplex method is a method that proceeds from one 

BFS or extreme point of the feasible region of an LP 

problem expressed in tableau form to another BFS, in such a 

way as to continually increase (or decrease) the value of the 

objective function until optimality is reached. The simplex 

method moves from one extreme point to one of its 

neighbouring extreme point. Consider the following LP in 

feasible canonical form, i.e. its right hand side vector 
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Here ,n iX   i = 1 …, m are the slack variables. The 

original variables , 1, ... ,iX i   n are called the structural 

or decision variables. Since all 0ib  , we can read off 

directly from the tableau a starting BFS given by 

1 2[0, 0, ... 0, , , ... , ]Tmb b b , i.e., all structural variables 

jX  are set to zero. Note that this corresponds to the origin 

of the n-dimensional subspace 
nR  of 

n mR 
. 

In Matrix form, the original 

constraint Ax b  has be 

augmented to  
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 
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Here sx  is the vector of slack variables. Since the columns 

of the augmented matrix [ : ]A I  that correspond to the slack 

variables 1{ }m
n i ix    is an identity matrix which is 

clearly invertible, the slack variables 1{ }m
n i ix    are 

basic. We denote by B the set of current basic variables, i.e. 

1{ }m
n i iB x   . The set of non-basic variables i.e. 

1{ }n
i ix   will be denoted by N. 

We consider now the process of replacing an rx B  by an 

8x N . We say that rx is to leave the basis and 8x  is to 

enter the basis. Consequently after this operation, rx  

becomes non-basic, i.e.. rx N  and sx  becomes basic, 

i.e. sx B  . This of course amounts to a different 

(selection of columns of matrix A to give a different) basis 

B. We shall achieve this change of basis by a pivot 

operation (or simply called pivot). This pivot operation is 

designed to maintain an identity matrix as the basis in the 

tableau at all time. 

III. PIVOT OPERATION WITH RESPECT TO 

THE ELEMENT rsa
 

Once we have decided to replace by 2r sx B x N   , 

the rsa  in  the tableau will be called the pivot element. We 

will see later that the feasibility condition implies that 

0rsa   . The r-th row and the s-th column of the tableau 

are called the pivot row and the pivot column respectively. 

The rules to update the tableau are: 

(1) In pivot row, / for 1, ...rj rj rsa a a j n m   . 

(2) In pivot column,  

1, 0 for 0, ... ,rj isa a i m i r    . 

(3) For all other elements, * /ij ij rj is rsa a a a a  . 

Graphically, we have 

*

/ 0becomes

/ 1

ij is ij ij is rs

rj rsrj rs

sj j s

i a a a a a a

a ar r a

 

Or, simply, 

*

0

becomes

1

bc
aa b d

cc d

d



 

This pivot operation is simply the Gaussian elimination such 

that variable sx  is eliminated from all m +1 but the r-th 

equation, and in the r-th equation, the co-efficient of sx  is 

equal to 1. In fact, Rule (1) above amounts to normalization 

of the pivot rows such that the pivot element becomes 1. 

Rule (2) above amounts to eliminations of all the entries in 

the pivot column except the pivot element. Rule (3) is to 

compute the Schur’s complement for the remaining entries 

in the tableau. 

IV. SIMPLEX METHOD FOR PROBLEMS IN 

FEASIBLE CANONICAL FORM 

Example 1.1   

Consider

1 2 3 4

1 2 3 5

1 2 3 6

3

2 3 3

2 1

   
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The Initial Tableau is given by Tableau 1: 

1 2 3 4 5 6 1

*
1

5

6

1 0 01 1 1 1 0 0 5
0 1 0

2 3 1 0 1 0 3
0 0 1

1 2 1 0 0 1 1

x x x x x x b B

x

x

x

 
 
 
  

   

The current basic solution is 
T[0, 0, 0, 5, 3,1]  which is clearly feasible. Suppose we choose 1, 1a  as our pivot element. 

Then after one pivot operation, we have 

 

Tableau 2: 

1 2 3 4 5 6 2

1

*
5

6

1 0 01 1 1 1 0 0 5

2 1 0
0 5 3 2 1 0 7

1 0 1
0 3 2 1 0 1 6

x x x x x x b B

x

x

x

 
 
   
  



 

We note that the current basic solution is 
T[5, 0, 0, 0, 7, 6]   which is infeasible. Using the new (2, 2) entry as pivot, we 

have  

Tableau 3: 

1 2 3 4 5 6
3

1

2

*

6

1 2 02 3 1 18
1 0 0 2 –3 05 5 5 5

1 2 1
3 2 1 7

0 2 0
5 5 5 5

1 1 3 9
0 0 1

5 5 5 5

 
 
 
  

 

 

x x x x x x b
B

x

x

x

The current basic solution is 

T
18 7 9

, , 0, 0, 0,
5 5 5

 
 
 

 and is feasible. Finally, let us eliminate the last slack variable 6x  by 

replacing it by 3x .  

Tableau 4: 

1 2 3 4 5 6 1

1

2

3

0 0 1 1 2 01 1 1 –1

0 1 0 1 2 3 4 2 –3 1

0 0 1 1 2 5 9 1 2 –1

   
   
 

     

x x x x x x b B

x

x

x

The current basic solution is 
T[0, 4, 9, 0, 0, 0]    

which is infeasible and degenerate. Thus we see that one 

cannot choose the pivot arbitrarily. It has to be chosen 

according to some feasibility criterion. There are three 

important observations that we should not here. First the 

pivot operations which amounts to elementary row 

operations on the tableaus,  
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are being recorded in the tableaus at the columns that 

correspond to the slack variables. In the example above, one 

can easily check that Tableau I is obtained from Tableau 1 

by pre-multiplying Tableau 1 by the matrix formed by the 

columns of 4 5 6, andx x x  in Tableau i. In the Tableaus, 

the inverse of these matrices are computed and are denoted 

by iB . Let the columns in Tableau 1 be denoted as usual by 

ja  and the columns in Tableau i be denoted by jy  , then 

since 

1 1
1 2 1 2[ , , , ] [ ] [ ] [ , , , ]m n i i m ni ia a a A I B B A B B Y Y Y

 
      

It is clear that i j jB Y a . Comparing this with equation 

(2.20), we see that iB  are the change of basis matrices from 

Tableau 1 to Tableau 4. 

Our second observation is the following one. Since the last 

column in Tableau 1 is given by b, the last column in 

Tableau I, which we denote by 
T

0 10 0( , )my y y   , 

will be given by 0iB y b  . Since iB  is invertible, 0y  

gives the basic variables of the current basic solution, i.e. the 

basic solution xi  B corresponding to Bi  is given by 

1
0

i
B ix y B b


   

For this reason, the last column of the tableau, i.e. 0y  , is 

called the solution column. 

The third observation is that the columns of iB are the 

columns of the initial tableau. For example, the columns of 

3B  are the first, second and the sixth columns of Tableau 1. 

In fact, Tableau 3 is obtained by moving (via elementary 

row operations) the identity matrix in Tableau 1 to the first, 

second and the sixth columns in Tableau 3. It indicates that 

in each iteration of the simplex method, we are just choosing 

different selection of columns of the augmented matrix to 

give a different basic matrix B. In particular, the solution 

obtained in each tableau is indeed the basic solution to our 

original augmented matrix system (3, 1). In fact, Tableau 3 

means that 
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5 50
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A I B b
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   
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           
      
   
    
 
 
 
  


 

i.e. the current solution is given by 

T
18 7 9

, , 0, 0, 0,
5 5 5

 
 
 

 . 

For Tableau 4, since 4B A  , we have 

   

1
1 1[ ]

0

A b
I A A b


 

 
  
  

  

Which is equivalent to 

   
1

0[ ] 0A A I b     

i.e. the current solution in Tableau 4 is given by 

1 T[ ,0]A b
 

In the following, we consider the criteria that guarantee the 

feasibility and optimality of the solutions. 

V. FEASIBILITY CONDITION 

Suppose that the entering variable sx has been chosen 

according to some optimality conditions, i.e. the pivot 

column is the s-the column.  
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Then the leaving basic variable rx  must be selected as the 

basic variable corresponding to the smallest positive ratio of 

the values of the current right hand side to the current 

positive constraint co-efficient of the entering non-basic 

variable sx . 

VI. OPTIMALITY CONDITION 

For simplicity, we consider a maximization problem. We 

first denote the entries in the row that correspond to 

0 0by jx y . The ( 1, 1) thm m n     
entry in the 

tableau is denoted by 00y  . We will show in the next 

section that 

( ), 1. .ij j jy c z j n m              (3) 

The negation of the reduced cost co-efficient that appeared 

in Theorem 2.6. Here jz  is defined in (2.25). Moreover, we 

will show also that 

   00
T
B By c x                 (4) 

i.e. 00y  is the current objective function value associated 

with the current BFS in the tableau. Thus according to 

Theorem 2.6, the entering variable sx 2 N can be selected as 

a non-basic variable sx having a negative co-efficient. 

Usual choices are the first negative 0sy  or the most 

negative 0sy  . If all co-efficient 0 jy  are non-negative, 

then by Theorem 2.7, an optimal solution has been reached. 

Summary of Computation Procedure 

Once the initial tableau has been constructed, the simplex 

procedure calls for the successive iteration of the following 

steps. 

1. Testing of the co-efficient of the objective function 

row to determine whether an optimal solution has 

been reached, i.e., whether the optimality condition 

that all co-efficients are non-negative in that row is 

satisfied. 

2. If not, select a currently non-basic variable sx  to 

enter the basis. For example, the first negative co-

efficient or the most negative one. 

3. Then determine the currently basic variable rx  to 

leave the basis using the feasibility condition, i.e. 

select rx  where 

 0 0/ min / 0r rs i isy y y yis y   

4. Perform a pivot operation with pivot row 

corresponding to rx  and pivot column 

corresponding to sx . Return to 1. 

Example 3.2. Consider the LP problem: 

0 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 0

Max 3 3

2 2

2 3 5
Subject to

2 2 6

, , 

  

  


  


  




x x x x

x x x

x x x

x x x

x x x

 

By adding slack variables 4 5 6, andx x x , we have the 

following initial tableau. 

Tableau 1: Initial tableau, current BFS is 

T[0, 0, 0, 2, 5, 6]x   and 0 0x  . 

1 2 3 4 5 6

*
4

5

6

0

Ratio

22 1 2 2 0 0 2 2
1

1 2 3 0 1 0 5
5

2.5
2 2 2 0 0 2 5 2

63 2 3 0 0 0 0 3
2





   

x x x x x x b

x

x

x

x

We choose 2x  as the entering variable to illustrate that any 

non-basic variable with negative co-efficient can be chosen 

as entering variable. The smallest ratio is given by 4x row. 

Thus 4x  is the leaving variable. 

Tableau 2: Current BFS is 

T
0[0, 2, 0, 0,1, 2] and 2x x 

1 2 3 4 5 6

2

*
5

*

6

0

Ratio

22 1 1 1 0 0 2 2
1

3 0 1 2 1 0 1
1

1
2 0 1 2 0 1 2 1

1 0 2 1 0 0 2



 


  

 

x x x x x x b

x

x

x

x

 

Tableau 3: Current BFS is 

T
0[0,1,1, 0, 0, 3] and 4x x  . 

1 2 3 4 5 6

*
2

3

6

0

Ratio

15 1 0 3 1 0 1

5
3 0 1 2 1 0 1

5 0 0 4 1 1 3

7 0 0 3 2 0 4



 

 

 

x x x x x x b

x

x

x

x
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Tableau 4: Optimal tableau, optimal BFS 

T
* *1 8

, 0, , 0, 0, 4 ,
5 5

x x
 

  
 

 

1 2 3 4 5 6

2

3

6

0

1 3 1 1
1 0 0

2 5 2 2

3 1 3 3
0 1 0

2 2 2 2

1
0 1 0 1 0 1

3

3 5 3 3
0 0 0

2 3 2 4







x x x x x x b

x

x

x

x

 

We note that the extreme point sequence that the simplex 

method passes through are 

4 5 6 2 5 6 2 3 6 1 3 6{ , , } { , , } { , , } { , , }.x x x x x x x x x x x x    

VII. SIMPLEX METHODS FOR PROBLEMS IN 

STANDARD FORM 

Our previous method is based upon the existence of an 

initial BFS to the problem. It is desirable to have an identity 

matrix as the initial basic matrix. For LP in feasible 

canonical form, the initial basic matrix is the matrix 

associated with the slack variables, and is an identity matrix. 

Consider an LP in standard form: 

0max

subject to
0

Tx c x

Ax b

x








 

Where we assume that 0b  . There is no obvious initial 

starting basis B such that mB I  .For notational simplicity, 

assume that we pick B as the last m (linearly independent) 

columns of A, i.e. 

A is of the form [ : ]A N B . We then have for the 

augmented system: 

0

 


  

xy xy

T T
a y y

N B b

x c xy c xy
 

Multiplying by 
1B

 to the first equation yields, 

1 1
xN BB N x B b    

–1 –1 Bx B b B Nxy  

Hence the 0x  equation becomes 

1 1
0 ( ) 0    T T

N Bx c xy c B b B NxN  

Thus we have 

–1 1

1 1
0 ( )



 

  


  

N B

T T T
N B N B

B Nx x B b

x c c B N x c B b

 

Denoting 
1T T

N BZ Z B N  (an (n - m) row vector) 

gives 

1 1

1
0 ( )

n B

T T T
N N N B

B Nx x B b

x c z x c B b





  


  

 

Which is called the general representation of an LP in 

standard form with respect to the basis B. Its initial simplex 

tableau is then 

1 1

1
0 ( ) 0

N B

B

T T T
N N B

x x b

x B N I B b

x c z c B b

 

 

 

We note that the j-th entry of Nz  is given by 

1 1T T T
B j B j B j jc B N c B a c y z     

Where jz is defined as in (2.21). Thus in the table, we see 

that the entries in the 0x  row are given by 

( )j j jc z x N   and zero for jx B . Thus they are the 

negation of the reduced cost co-efficients. This varies 

equation (3.3) that we have assumed earlier. Moreover, by 

(3.2), we see that 

1
00

T T
B B By c B b c x   

Which is the same as (4.4) 

We remark that 0x  is now expressed in terms of the non-

basic variables, 

1
0 ( )

j

n
T
B j j j

x N

x c B b c z x



                        (5) 

Hence it is easy to see that for maximization problem, the 

current BFS is optimal when 0j jc z   for all j. For 

minimization problem, the current BFS will be optimal 

when j jc z , 0 for all j. 

Example 3.3. Consider the following LP 

0 1 2

1 2

1 2

1 2

max

2 4

subject to 2 6

, 0

x x x

x x

x x

x x

 

 


 
 

 

Putting into standard form by adding the surplus variable 

3x  the augmented system is: 

1 2 3

1 2

0 1 2

2 4

2 6

0

x x x

x x

x x x

  


 
   

 

The simplex tableau for the problem is: 
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Tableau 1: 

1 2 3

0

2 1 1 4

1 2 0 6

1 1 0 0

x x x b

x



 
 

Here we do not have a starting identity matrix. Suppose we 

let 1x  and 2x  to be our starting basic variables, then 

2 1 1 1
, and

1 2 0 1
BB N c

     
       
     

 

In this case 

1

1
3

1

2 11

1 23

2

2 1 11 3

1 2 0 13

3

2

2 1 41 3

1 2 6 83

3

B

x B N

b B b







 
  

 

 
     

       
     

  

 
    

       
     

  

 

It is also easily check that 

 1
3

2 1 11 1
1 1

1 2 03 3

T
jz c B a     

       
   

 

And the current value of the objective function is given by 

 1 2 1 41 10
1 1

1 2 63 3

T
Bc B b    

      
   

 

Hence the starting tableau is: 

Tableau 2: 

1 2 3

1

*

2

0

2 2
1 0

3 3

1 8
0 1

3 3

1 10
0 0

3 3

x x x b

x

x

x





 

Thus 

T
2 8

, , 0
3 3

x
 

  
 

 is an initial BFS. We can now apply 

the simplex method as discussed in 1x  to find the optimal 

solution. The next iteration gives: 

1 2 3

1

3

0

1 2 0 6

0 3 1 8

0 1 0 6

x x x b

x

x

x

 

Thus the optimal solution is 

We note that if we choose 1x  and 3x  as our starting basis 

variables, then we get Tableau 3 immediately and no 

iteration is required. However, if 2 3andx x  are chosen as 

starting variables, then we have 

Tableau 3: 

1 2 3

1

3

0

1
1 0 3

2

3
0 1 1

2

1
0 0 3

2

x x x b

x

x

x

 



 

Hence the starting basis solution is not feasible and we 

cannot use the simplex method to find our optimal solution. 
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