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Abstract— Distributed estimation and detection are the two 

most important tasks of wireless sensor networks (WSNs).  In 

the detection task, the fusion center needs to make a decision 

about the presence of a target. Usually, to make this decision, the 

fusion center uses a threshold. If the received signal is greater 

than the threshold, the fusion center considers the target is 

present. If the received signal is less than the threshold, the 

fusion center considers the target is absent. In the estimation 

problem, the fusion center will use a maximum likelihood 

estimation (MLE) method to estimate target location. In this 

MLE method, a threshold is needed for sensors to quantize 

information before sending information to the fusion center. 

This paper will investigate whether the two thresholds are 

identical. This problem is practically important because if the 

two thresholds are identical, the design of WSNs can be 

simplified. 

Index Terms—Distributed detection, distributed estimation, 

K-L distance, wireless sensor networks.  

I. INTRODUCTION 

Tasks and applications of wireless sensor networks (WSNs) 

have become popular research topics [1]-[13]. Among the 

tasks WSNs can perform are tracking, detection and 

estimation [14]. Target detection and target estimation are 

particularly important because they are widely used.  

In a target detection problem, the fusion center, after 

collecting information from sensors, makes a decision about 

the presence of a target. Usually, the fusion center makes the 

decision according to a threshold. If the signal received from 

the sensor is greater than the threshold, the fusion center 

considers the target is present. If the signal received is less 

than the threshold, the fusion center considers the target is 

absent. This threshold is called detection threshold, and is an 

important parameter in the detection problem.  

In an estimation problem, the fusion center, after collecting 

information from sensors, estimates the target position using a 

maximum likelihood estimation (MLE) method. To save 

energy, before sending information to the fusion center, 

sensors will quantize information according to a threshold. 

This threshold is called quantization threshold.  

In this paper, we will investigate whether the quantization 

threshold and detection threshold are the same for various 

situations. This problem is practically important because one 

can simplify the design of WSNs if the two thresholds are 

identical. The main contribution of this paper is the 

comparison of detection threshold and quantization threshold. 
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This paper is organized in the following way. Section II 

presents distributed estimation in WSNs, followed by 

detection problem in WSNs in Section III. Section IV 

presents simulation setup and Section V provides results and 

discussion. Finally, Section VI delivers concluding remarks.  

II. DISTRIBUTED DETECTION IN WSNS  

The system diagram of a WSN is shown in Figure 1.  
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             Figure 1. System diagram of a WSN 

 

We use the same setup and formulation as in [15]-[17]. For 

completeness of the theory, the formulation presented in 

[15]-[17] is reproduced here. In the distributed estimation 

problem, an unknown parameter,  , is estimated based on 

information from a total number of  N  sensors. Sensors are 

identical and   follows the distribution ( )f  , which is 

defined as:
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The signal received at the thi sensor is iy , which can be 

expressed as
 

i iy w 
                                  

(2)
 

where  is the parameter to be estimated and iw  is a 

Gaussian noise following the distribution ~ (0,1)iw N . 

According to the quantization threshold
1 , sensors quantizes 

iy into a decision iD  and the quantization process can be 

expressed as 
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The probability that iD  takes value l  is
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where )(xQ is defined as 

              
2

2
1

2

t

x
Q x e dt





                         (5)      

After receiving decision vector 

1 2 1[ , , , ]N ND D D DD  ,                   (6) 

the fusion center maximizes (7) to find a θ , which can be 

expressed as 

              
1
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i il
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For an unbiased estimator θ̂ , the Posterior Cramer-Rao 

lower bound (PCRLB) is given by  

                 
1ˆ ˆ{[ ( ) ][ ( ) ] }TE θ -θ θ -θ D D J
                  (9) 

              
     ln ,TE p       J D .                       (10) 

   The PCRLB for this distributed estimation problem can be 

found in [18][19]. For references, the PCRLB calculation is 

reproduced here. The PCRLB can be divided into two parts, 

dJ and 
pJ , which can be expressed as 
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The first part 
dJ  can be calculated by 
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In (12), ( )s J can be calculated by 
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In (13), 
0 1( , )ip   and 

1 1( , )ip   are  
2

2
0

1
( , )

2

w

i ip e dw

 

 







 


                  
(14)

 
2

2
1

1
( , )

2

w

i ip e dw
 

 







 


.                 
(15) 

The derivative of 
0 1( , )ip   and 

1 1( , )ip   with respect to   

can be expressed as
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Now, we have all elements of (13). The PCRLB is a useful 

performance criterion. The optimum quantization threshold 

can be determined by minimizing the PCRLB. Moreover, 

because PCRLB is the inverse of fisher information, 

minimizing PCRLB is equal to maximizing fisher 

information. 

III. DISTRIBUTED DETECTION IN WSNS 

Target detection is also a classic problem in WSNs. The 

fusion center makes a decision about the presence of a target 

based on information from sensors. In this paper, because all 

sensors are identical, we only use one sensor. The detection 

problem is to decide either (18) is valid or (19) is valid 

1 : i iH y w 
                           

(18) 

    0 : i iH y w .
                             

(19) 

For the detection problem, we still use the setup in (1)-(2).The 

detection threshold is 
2 . If the received signal is greater than 

2 , the fusion center considers the target is present (
1u ). If 

the received signal is less than 
2 , the fusion center considers 

the target is absent ( 0u ). The performance of a detection 

method can be measured by Kullback–Leibler (K-L) distance 

[20][21]. The K-L distance is defined as 
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Elements of (20) can be calculated by  
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We can insert (21) to (24) into (20) to derive the K-L distance. 

IV. SIMULATION SETUP 

We need to find an optimum threshold 1  to maximize the 

fisher information (minimize PCRLB) for the distributed 

estimation problem. For detection problem, we need to find 

an optimum threshold 
2  to maximize the K-L distance. To 

see whether 1  is equal to 
2 , we need to find the optimum 

1  and 
2  

for two different types of distributions:   follows 

uniform distribution [ 1 1]u    and   follows exponential 

distribution ( 1  ).  

 



International Journal of Inventive Engineering and Sciences (IJIES) 

ISSN: 2319–9598, Volume-1, Issue-3, February 2013 

 

15 

 

V. RESULTS AND ANALYSIS 

For uniform distribution, results are shown in Figure 2 and 

Figure 3. We can see that the fisher information achieved 

maximum value around 0.6 while the K-L distance achieved 

maximum value at 0.  For exponential distribution, results are 

shown in Figure 4 and Figure 5. We can see that the fisher 

information achieved maximum value around 0.6 and the K-L 

distance achieves maximum point around 1.9. Therefore, we 

can conclude that the detection threshold and quantization 

threshold are not the same for   following uniform 

distribution or exponential distribution.  

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

Threshold

F
is

h
e
r 

in
fo

rm
a
ti
o
n

 
Figure 2. Fisher information for uniform distribution 
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Figure 3. K-L distance for uniform distribution 
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Figure 4. Fisher information for exponential distribution 

( 1  ) 
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Figure 5. K-L distance for exponential distribution ( 1  ) 

VI. CONCLUSION 

In this paper, we found the detection threshold and 

quantization threshold for   following uniform distribution 

or exponential distribution. Results showed that the 

quantization threshold and detection threshold are not the 

same.  
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